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Wigner-Poisson Equation for f (t, x, k)
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h: Planck’s constant; m∗: effective mass of electron

τ : relaxation time; f0: equilibrium distribution
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Potential Energy Term

V (f)(x, k) =
1

h

∫

dk′f(x, k′)

∫

dy[U(x+y)−U(x−y)]sin[2y(k−k′)].

where

U(x) = u(x) + ∆c(x)

uxx(x) = q2

ε
[Nd(x)− n(x)], u(0) = 0, u(L) = −Vbias

n(x) =
∫

∞

−∞

dk
2π

f(x, k)

∆c: potential barriers; Nd: doping profile

q: electron charge; ε: dielectric permittivity
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Computational Costs

Discretize with nx points in x and nk in k. Costs:

• n(x) =
∫

∞

−∞

dk
2π

f(x, k)k: O(nxnk).

• d2

dx2 u(x) = q2

ε
[Nd(x)− n(x)]: O(nx).

• ∂f

∂t

∣

∣

coll
= 1

τ

[

f0(x,k)
R

dkf0(x,k)

∫

dkf(x, k)− f(x, k)
]

: O(nxnk).

V (f) =
1

h

∫

dk′f(x, k′)

∫

dy[U(x + y)− U(x− y)]sin[2y(k − k′)].

direct evaluation: O(n2
xn

2
k).

Use FFT and be clever to get O(nxnk(log nx + log nk)).

C. T. Kelley – p.5



Parameter-dependence Study

Solution dynamics depend on boundary conditions for

d2

dx2
u(x) =

q2

ε
[Nd(x)− n(x)]

which are
u(0) = 0;u(L) = −Vbias.

Objectives:

• Explain prior numerical observations of hysteresis.

• Find values of Vbias for which f is periodic in time.
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Path Following

F : X × [a, b], F smooth, X a Banach space.
Objectives:

• Solve F (u, λ) = 0 for λ ∈ [a, b]

• Understand ut = F (u, λ) by looking at spectrum of Fu

Obvious approach:
Set λ = a, solve F (u, λ) = 0 with
Newton-(MG, GMRES, . . . ) to obtain u0 = u(λ).
while λ < b do

Set λ = λ + dλ.
Solve F (u, λ) = 0 with u0 as the initial iterate.
u0 ← u(λ)

end while
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What’s the problem?

• Multiple solutions, hysteresis

• Changes in dynamic stability

• No solutions

A fix: Pseudo-arclength continuation.
Set x = (u, λ) and solve G(x, s) = 0, where, for example

G(x, s) =

(

F

N

)

=

(

F (u(s), λ(s))

u̇T (u− u0) + λ̇T (λ− λ0)− (s− s0)

)

.

s is an artificial “arclength” parameter.
u0 and λ0 are from the previous step.

u̇ ≈ du/ds and λ̇ ≈ dλ/ds.
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Simple Folds

We follow solution paths {x(s)} to better understand
ut = F (u, λ).
Assume that F is smooth and

• Gx is nonsingular (not always true) So implicit function
theorem holds in s.

We are assuming that there is no true bifurcation and that
any singularity in λ is at worst a simple fold.

• dimKer(Fu) = 1

• Fλ 6∈ Ran(Fu)
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Hopf Bifurcations

We also look for Hopf Bifurcation,

• A complex conjugate pair of eigenvalues of Fu cross the
imaginary axis from the left.

• Leads to periodic dynamics for ut = F (u, λ).
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Arclength Continuation Algorithm

Set λ = a, s = 0 solve F (u, λ) = 0 with
Newton-(MG, GMRES, . . . ) to obtain u0.
Estimate ds, u̇, λ̇.
while s < smax do

s← s + ds.
Solve G(x, s) = 0 with u0 as the initial iterate.
Examine Fu or Gx for folds and bifurcations.
x0 ← x

Update ds, u̇, λ̇.
end while
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Path following for Wigner Poisson Eq

• Use LOCA (Salinger-Phipps)
NOX, AztecOO, Anasazi, Epetra

• Precondition with inverse of spatial differential operator

• Uniformly bounded, not quite compact

• Folds, hysteresis, Hopf bifurcation

• Figure: Current density j(x) at x = L vs Vbias

j(x) =
h

2πm∗

∫

kf(x, k)dk
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Latest LOCA results; new physics
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Hopf bifurcation on coarse grid
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LOCA

• Part of Trilinos - Sandia’s parallel solver project

• Makes use of several other parts of Trilinos:
• NOX : Nonlinear solver

Preconditioned Newton-Krylov
• AztecOO : Preconditioned Krylov linear solvers
• Anasazi : Eigensolver
• Epetra : Data Structure
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Parallelism

• Each processor has a block in space, all of momentum
FFT convolution in k; BLAS3 for convolution in x.

• Epetra data structures used in simulator + all solvers

• Computations on various LINUX clusters.
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Parallel Efficiency
Continuation with nx = 688, nk = 576

# Procs. Linear Solve Time (s) Speedup Efficiency (%)

1 431.21 — —

2 263.69 1.64 82.0

4 115.71 3.73 93.3

8 75.23 5.73 71.6

16 45.38 9.50 59.4
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Scalability

Scalability of Parallel Simulator
Nx Nk # Procs. Avg. F Eval Time (s)
172 144 1 0.1209
344 288 4 0.2814
688 576 16 0.5505

Tricky: not the same problem at all grids.

Bottom line: 40% scalar code.
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Conclusions

• Parametric study of Wigner-Poisson Equation

• Finding new physics

• Scalable Preconditioner
Still too much scalar code

• Hysteresis understood

• Hopf understood on coarse grids
working on eigensolver for fine grids
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