

Solution of the Wigner-Poisson Equations for RTDs

C. T. Kelley

Matthew Lasater, Andrew Salinger

Dwight Woolard, Peiji Zhao

Department of Mathematics

Center for Research in Scientific Computation

North Carolina State University

Raleigh, North Carolina, USA

DCABES 2004

Wuhan, China, September 2004

Supported by ARO, NSF.

Outline

- Wigner-Poisson Equation
 - Cost of evaluation.
 - Parameter tracking.
- Parallel Computation
 - SANDIA nonlinear solver tools: NOX and LOCA
 - TRILINOS infracstucture
- Future work
- Conclusions

Wigner-Poisson Equation for $f(t, x, k)$

$$\frac{\partial f}{\partial t} = -\frac{\hbar k}{2\pi m^*} \frac{\partial f}{\partial x} - V(f) + \left. \frac{\partial f}{\partial t} \right|_{coll},$$

where

$$\left. \frac{\partial f}{\partial t} \right|_{coll} = \frac{1}{\tau} \left[\frac{f_0(x, k)}{\int dk f_0(x, k)} \int dk f(x, k) - f(x, k) \right].$$

\hbar : Planck's constant; m^* : effective mass of electron

τ : relaxation time; f_0 : equilibrium distribution

Potential Energy Term

$$V(f)(x, k) = \frac{1}{h} \int dk' f(x, k') \int dy [U(x+y) - U(x-y)] \sin[2y(k-k')].$$

where

$$U(x) = u(x) + \Delta_c(x)$$

$$u_{xx}(x) = \frac{q^2}{\epsilon} [N_d(x) - n(x)], u(0) = 0, u(L) = -V_{bias}$$

$$n(x) = \int_{-\infty}^{\infty} \frac{dk}{2\pi} f(x, k)$$

Δ_c : potential barriers; N_d : doping profile

q : electron charge; ϵ : dielectric permittivity

Computational Costs

Discretize with n_x points in x and n_k in k . Costs:

- $n(x) = \int_{-\infty}^{\infty} \frac{dk}{2\pi} f(x, k) k: O(n_x n_k).$
- $\frac{d^2}{dx^2} u(x) = \frac{q^2}{\epsilon} [N_d(x) - n(x)]: O(n_x).$
- $\frac{\partial f}{\partial t} \Big|_{coll} = \frac{1}{\tau} \left[\frac{f_0(x, k)}{\int dk f_0(x, k)} \int dk f(x, k) - f(x, k) \right]: O(n_x n_k).$

$$V(f) = \frac{1}{h} \int dk' f(x, k') \int dy [U(x + y) - U(x - y)] \sin[2y(k - k')].$$

direct evaluation: $O(n_x^2 n_k^2)$.

Use FFT and be clever to get $O(n_x n_k (\log n_x + \log n_k))$.

Parameter-dependence Study

Solution dynamics depend on boundary conditions for

$$\frac{d^2}{dx^2}u(x) = \frac{q^2}{\epsilon} [N_d(x) - n(x)]$$

which are

$$u(0) = 0; u(L) = -V_{bias}.$$

Objectives:

- Explain prior numerical observations of hysteresis.
- Find values of V_{bias} for which f is periodic in time.

Path Following

$F : X \times [a, b]$, F smooth, X a Banach space.

Objectives:

- Solve $F(u, \lambda) = 0$ for $\lambda \in [a, b]$
- Understand $u_t = F(u, \lambda)$ by looking at spectrum of F_u

Obvious approach:

Set $\lambda = a$, solve $F(u, \lambda) = 0$ with

Newton-(MG, GMRES, ...) to obtain $u_0 = u(\lambda)$.

while $\lambda < b$ **do**

 Set $\lambda = \lambda + d\lambda$.

 Solve $F(u, \lambda) = 0$ with u_0 as the initial iterate.

$u_0 \leftarrow u(\lambda)$

end while

What's the problem?

- Multiple solutions, hysteresis
- Changes in dynamic stability
- No solutions

A fix: Pseudo-arc length continuation.

Set $x = (u, \lambda)$ and solve $G(x, s) = 0$, where, for example

$$G(x, s) = \begin{pmatrix} F \\ N \end{pmatrix} = \begin{pmatrix} F(u(s), \lambda(s)) \\ \dot{u}^T(u - u_0) + \dot{\lambda}^T(\lambda - \lambda_0) - (s - s_0) \end{pmatrix}.$$

s is an artificial “arc length” parameter.

u_0 and λ_0 are from the previous step.

$\dot{u} \approx du/ds$ and $\dot{\lambda} \approx d\lambda/ds$.

Simple Folds

We follow solution paths $\{x(s)\}$ to better understand $u_t = F(u, \lambda)$.

Assume that F is smooth and

- G_x is nonsingular (not always true) So implicit function theorem holds in s .

We are assuming that there is no true bifurcation and that any singularity in λ is at worst a **simple fold**.

- $\dim \text{Ker}(F_u) = 1$
- $F_\lambda \notin \text{Ran}(F_u)$

Hopf Bifurcations

We also look for Hopf Bifurcation,

- A complex conjugate pair of eigenvalues of F_u cross the imaginary axis from the left.
- Leads to periodic dynamics for $u_t = F(u, \lambda)$.

Arclength Continuation Algorithm

Set $\lambda = a$, $s = 0$ solve $F(u, \lambda) = 0$ with
Newton-(MG, GMRES, ...) to obtain u_0 .

Estimate ds , \dot{u} , $\dot{\lambda}$.

while $s < s_{max}$ **do**

$s \leftarrow s + ds$.

Solve $G(x, s) = 0$ with u_0 as the initial iterate.

Examine F_u or G_x for folds and bifurcations.

$x_0 \leftarrow x$

Update ds , \dot{u} , $\dot{\lambda}$.

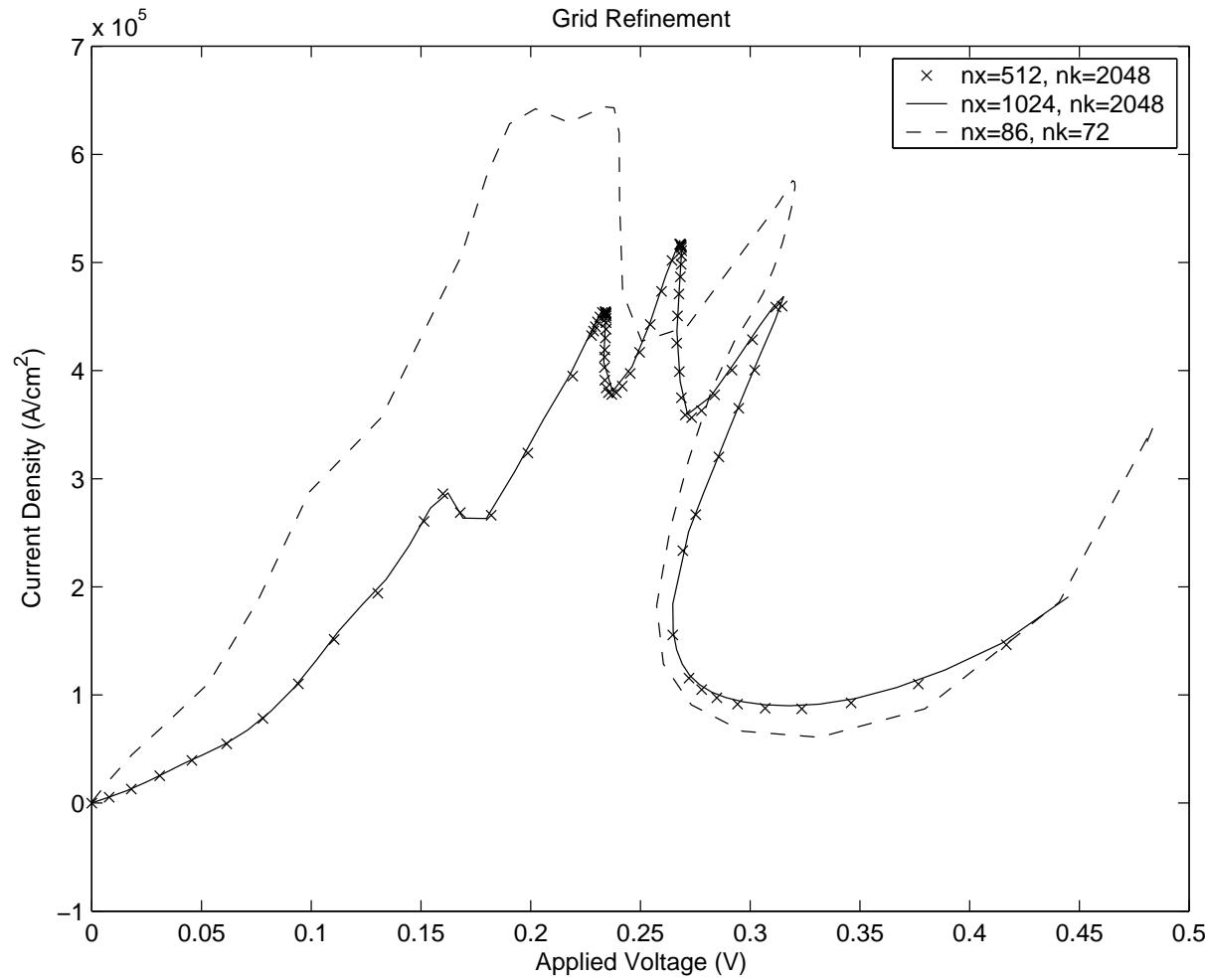
end while

Path following for Wigner Poisson Eq

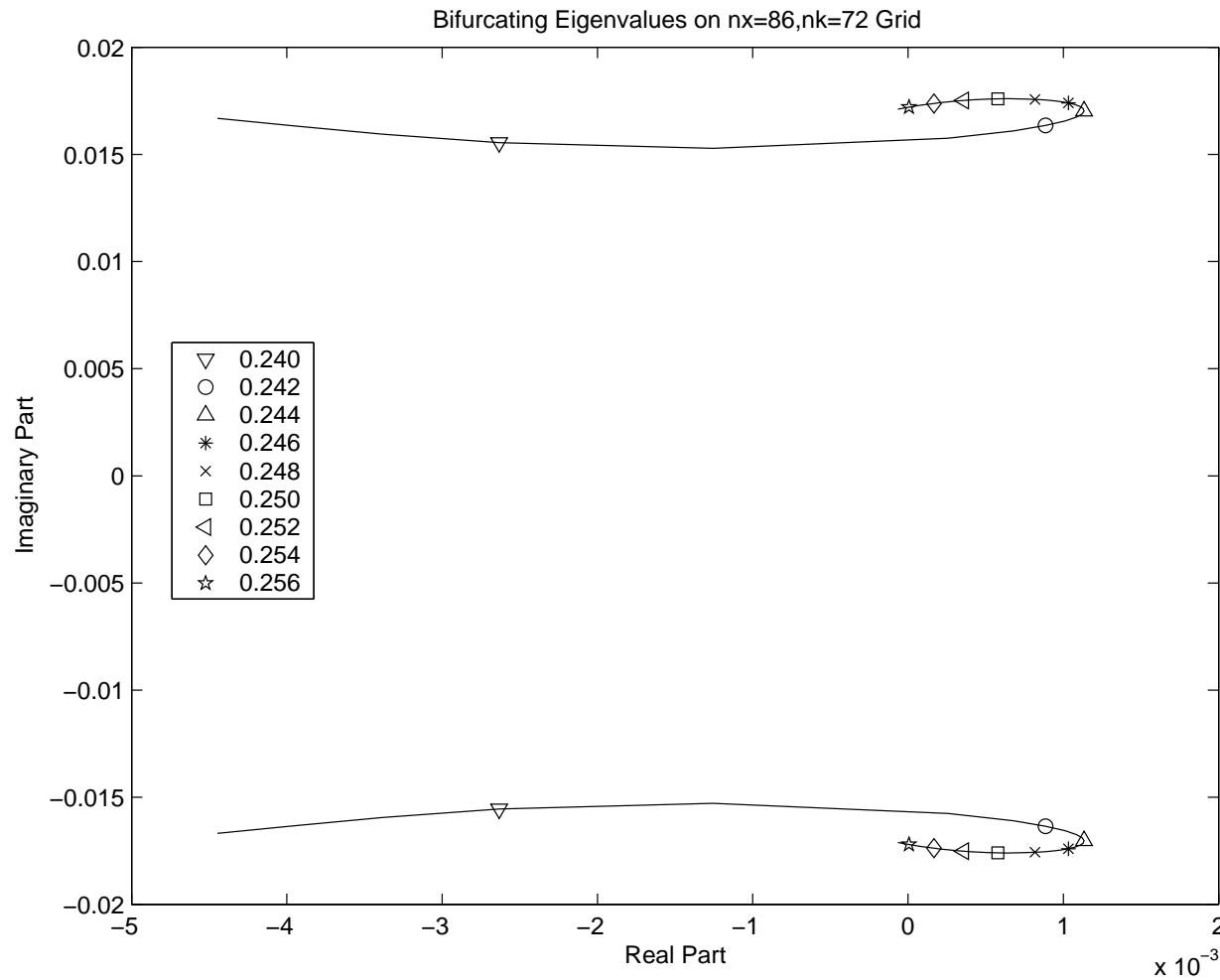
- Use LOCA (Salinger-Phipps)
NOX, AztecOO, Anasazi, Epetra
- Precondition with inverse of spatial differential operator
- Uniformly bounded, not quite compact
- Folds, hysteresis, Hopf bifurcation
- Figure: Current density $j(x)$ at $x = L$ vs V_{bias}

$$j(x) = \frac{h}{2\pi m^*} \int k f(x, k) dk$$

Latest LOCA results; new physics



Hopf bifurcation on coarse grid



LOCA

- Part of Trilinos - Sandia's parallel solver project
- Makes use of several other parts of Trilinos:
 - NOX : Nonlinear solver
Preconditioned Newton-Krylov
 - AztecOO : Preconditioned Krylov linear solvers
 - Anasazi : Eigensolver
 - Epetra : Data Structure

Parallelism

- Each processor has a block in space, all of momentum FFT convolution in k ; BLAS3 for convolution in x .
- Epetra data structures used in simulator + all solvers
- Computations on various LINUX clusters.

Parallel Efficiency

Continuation with $n_x = 688, n_k = 576$

# Procs.	Linear Solve Time (s)	Speedup	Efficiency (%)
1	431.21	—	—
2	263.69	1.64	82.0
4	115.71	3.73	93.3
8	75.23	5.73	71.6
16	45.38	9.50	59.4

Scalability

Scalability of Parallel Simulator

N_x	N_k	# Procs.	Avg. F Eval Time (s)
172	144	1	0.1209
344	288	4	0.2814
688	576	16	0.5505

Tricky: not the same problem at all grids.

Bottom line: 40% scalar code.

Conclusions

- Parametric study of Wigner-Poisson Equation
- Finding new physics
- Scalable Preconditioner
Still too much scalar code
- Hysteresis understood
- Hopf understood on coarse grids
working on eigensolver for fine grids