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Wigner-Poisson Equation for  f(t, z, k)

of  hk Of of
ot 2wm* Ox - V() + It .
where
off  _ 1| _fo(@,k) ) ]
ot coll T [f dkaCIZ‘,k) /dkf<xak) f([l?,k) ,

h: Planck’s constant; m*: effective mass of electron

7. relaxation time; fy: equilibrium distribution
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Potential Energy Term

1

V(Oek) = [ k) [ dUa+y)-Ulo-y)lsinf2y(b- 1)

A.. potential barriers; N;. doping profile

g. electron charge; ¢: dielectric permittivity
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Computational Costs

Discretize with n, points in z and n; in k. Costs:
o n(x)= [T 2 f(x,k)k: O(nyng).
o dd22u( ) = %[Nd(x) —n(x)]: O(ng).

° a_{ coll — - {fécigik Jdkf(x, k) — f(x, k)| O(nang).

1

! / aK' f (2, k) / WU (z +y) — Uz — y)]sin2y(k — ).

V(f)=1

direct evaluation: O(n2nz).

Use FFT and be clever to get O(n,ng(logn, + logny)).
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Parameter-dependence Study

Solution dynamics depend on boundary conditions for

d2 q2
——u(w) = T[Ny(w) = n()
which are
w(0) = 0;u(L) = =Vijas.
Objectives:

e EXxplain prior numerical observations of hysteresis.

e Find values of V},,, for which f is periodic in time.
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Path Following

F : X x|a,b], F smooth, X a Banach space.
Objectives:

e Solve F(u,\) =0for A\ € |a, b
e Understand u; = F'(u, A) by looking at spectrum of £,

Obvious approach:

Set A = qa, solve F(u, \) = 0 with

Newton-(MG, GMRES, ...) to obtain ug = u(\).

while X\ < b do
Set A= X+ dA.
Solve F(u, \) = 0 with ug as the initial iterate.
ug — ()

end while
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What'’s the problem?

e Multiple solutions, hysteresis
e Changes in dynamic stability
e No solutions

A fix: Pseudo-arclength continuation.
Set z = (u, ) and solve G(x, s) = 0, where, for example

(P F'(u(s), A(s))
G(z,s) = ( N ) B < Wl (u —up) + AT (A = Xg) — (5 — s0) ) |

s IS an artificial “arclength” parameter.
up and \g are from the previous step.

i~ du/ds and \ = d\/ds.
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Simple Folds

We follow solution paths {z(s)} to better understand
ug = F(u, \).
Assume that F' is smooth and

e (G, Is nonsingular (not always true) So implicit function
theorem holds In s.

We are assuming that there is no true bifurcation and that
any singularity in X is at worst a simple fold.

e dimKer(F,) =1
e I\ ¢ Ran(F,)
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Hopf Bifurcations

We also look for Hopf Bifurcation,

e A complex conjugate pair of eigenvalues of F;, cross the
iImaginary axis from the left.

e Leads to periodic dynamics for u; = F(u, \).
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Arclength Continuation Algorithm

Set A = a, s =0 solve F(u,\) = 0 with
Newton-(MG, GMRES, ...) to obtain wy.
Estimate ds, 1, \.
while s < s,,,4, dO
s < S+ ds.
Solve G(x,s) = 0 with ug as the initial iterate.
Examine F,, or G, for folds and bifurcations.
rg <— X
Update ds, u, .
end while
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Path following for Wigner Poisson EQ

e Use LOCA (Salinger-Phipps)
NOX, AztecOO, Anasazi, Epetra

e Precondition with inverse of spatial differential operator
e Uniformly bounded, not quite compact

e Folds, hysteresis, Hopf bifurcation

e Figure: Current density j(x) at x = L VS Vj;4s

h

2mm*

J() =

/ kf (2. k)dk
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Latest LOCA results; new physics

X 10° Grid Refinement

| |
x nx=512, nk=2048
. — nx=1024, nk=2048
— — nx=86, nk=72

Current Density (A/cmz)

| | | | | | | | |
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Applied Voltage (V)
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Hopf bifurcation on coarse grid

Imaginary Part

Bifurcating Eigenvalues on nx=86,nk=72 Grid
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LOCA

e Part of Trilinos - Sandia’s parallel solver project

e Makes use of several other parts of Trilinos:

NOX : Nonlinear solver
Preconditioned Newton-Krylov

AztecOO : Preconditioned Krylov linear solvers

Anasazi : Eigensolver
Epetra : Data Structure
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Parallelism

e Each processor has a block in space, all of momentum
FFT convolution in £; BLAS3 for convolution in z.

e Epetra data structures used in simulator + all solvers
e Computations on various LINUX clusters.
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Parallel Efficiency

Continuation with n, = 688, np = 576

# Procs. | Linear Solve Time (s) | Speedup | Efficiency (%)
1 431.21 — —
2 263.69 1.64 82.0
4 115.71 3.73 93.3
8 75.23 5.73 /1.6
16 45.38 9.50 59.4
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Scalability

Scalability of Parallel Simulator

N, | N | # Procs. | Avg. F Eval Time (s)
172 | 144 1 0.1209
344 | 288 4 0.2814
688 | 576 16 0.5505

Tricky: not the same problem at all grids.

Bottom line: 40% scalar code.
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Conclusions

Parametric study of Wigner-Poisson Equation
Finding new physics

Scalable Preconditioner
Still too much scalar code

Hysteresis understood

Hopf understood on coarse grids
working on eigensolver for fine grids
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