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Outline

Model problem: Calibration of groundwater flow model

Surrogate models vs reduced model
Construction of reduced model

Optimization via Pseudo-Transient Continuation (\Vtc )

1-D example
2-D example
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Model Problem

Darcy’s law for groundwater flow says:
div(KOu) = f

where K is the spatially dependent hydraulic conductivity.
Our objective is to approximate K from sparse
measurements.
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Standard approach

Banks/Kunisch 89, Doherty (PEST) 90’s — present
e Parameterize K (spline, piecewise constant ...) by p € RV.
e Organize measurments into data vector d € RV,

e Write solver for discrete PDE to obtain solutions u € RMx when
given p.

e Map u to data space with D : RMx — RM
evaluation at well locations, for example.

e Solve min||D(u(p)) —d||% or a regularized version of that
problem.

For us: M << N << My, so the PDE solve is the expensive part
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Surrogate Models

e Replace minf by min f where f is iInexpensive

Response surface:
guadratic, radial basis, neural net, ...

Coarse mesh version of PDE:
different grid, less physics, ...

Model reduction: Original PDE + smaller basis
Captures problem structure (still least squares)
Same code and same physics
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Bulding the reduced model

e Discretize PDE with A(p)u= f.

e Find basis U = [uy, ..., uk] that “captures” most
solutions.

e Replace Au= f with

U=UTAUU=f=UTT

So how do you get U?
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PODS

Proper Ortogonal Decomposition from fluid control
(Karhunen, 46)

e Collect snapshots W = |wg,Wo,...w | from time
dependent simulation.

e Take SVD of snapshots: UXVT =W.
e |dentify K for which ok 1 Is “small”.

° J: [U1,...,UK]

What's L? What does “small” mean?
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Artificial time dependent problem

e Write problem as min f where f = R"R/2.

e If(p)=R(p)(p)

e Integrate p' = —[Of(p) for a few Euler steps.
Collect the U'sto get W.

e Proceed as in POD
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Optimization via Wtc

Pseudo-Transient Continuation finds steady state solutions
of
du
dt
by mimicing integration to steady state with the goal of
Increasing the time step.
Simple forumlation

—F(u)

Unt1 = Un— (871 +F'(Un)) ~*F (Un)
where {d,} is controled by Switched Evolution Relaxation:

(A)Ohi1 = n/[[F (un)]| or (B)ont1 = on/||Xn —Xn—1]]
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Optimization

General Idea: Higham, 1999 (also Fletcher 1987)

e minf — U = —0Of (very old idea)

e Solve with Wtc , manage step with TR approach
Liao-Qi-Qi 2004, Liao-Qi-K 2006

e Constraints — nonsmooth gradient

e Use generalized derivative and/or smoothing

e WYic with SER/TR step control
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Least Squares Example

Problem:
min f (x) where f(x) = RT(X)R(X)/2,
R:RY— R, M >N.
Tf(x) = R(X)TR(X)

Gauss-Newton approximation to 0%f is H(x) = R(X)TR/(x)
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Wtic for nonlinear least squares

Xn+1 =X — (&5 1 + R (Xn) "R(Xn)) TR (Xn) " R(%n)

Levenberg-Marquardt if we use no second derivative
iInformation.
Differences: management of o (but see K. 1999)
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Bound Constrained Problems

Problem: miny.q f(X) where
Q = {x|Lj < (x)i <Uj}
Necessary conditions for optimality
F(X)=x—Z(x—0f(x))=0

where
L; if (X)i <L
P(X)i=4¢ (X); ifL < (X)i<U
U If (X)i > U,
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Wtc for bound constraints

The dynamics
X = —F(X)

are stable and liminf ||F (x)|| = O (Liao-Qi-Qi)
But F IS nonsmooth, in a direct Wtc

Xnt1 =X — (& 1 +F'(xn)) 7'F (Xn)

you have to approximate F’ carefully. If you do this,
convergence results of (K, Fowler 06) hold.
There’s an easier way.
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Projected Wtc

where H/, is the reduced Hessian.
Contrast with scaled gradient projection

Xni1= 2 (% — (Hp) " Of (%n)).
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Reduced Model Hesslan

Given Xn, Hn, &, let D, be the diagonal matrix

(D) — 1 if jlun— & (un)|| > &n
ke 0 otherwise

Hrr] — I — Dn(l — Hn)Dn
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Three versions

Direct Wtc :
Xnr1=Xn— (G 11 +F' (X)) "*F (Xn)
Projected Wtc :
Xni1 = 2 (X — (& 1 +Hp) ' (X))
Projected gradient projection:
Xn1 = P (X — (Hy) ~T0f (xn)).

Manage o with SER or Trust Region

C.T. Kelley — p.17



Convergence?

Global and locally fast convergence If:
e Direct Wtc : x(t) — x*; SER or TR 0 management
e Projected GP: H{ uniformly well conditioned + spd

e Projected Wtc : x(t) — x*
H/, either spd (TR) or inexact Newton condition (SER)

Our experiments (Liao, K, 06; this talk) say that SER works
best.
SER(B) Is best for this application.
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