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Outline

• Model problem: Calibration of groundwater flow model
• Surrogate models vs reduced model
• Construction of reduced model

• Optimization via Pseudo-Transient Continuation (Ψtc )

• 1-D example

• 2-D example
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Model Problem

Darcy’s law for groundwater flow says:

div(K∇u) = f

where K is the spatially dependent hydraulic conductivity.
Our objective is to approximate K from sparse
measurements.
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Standard approach

Banks/Kunisch 89, Doherty (PEST) 90’s – present

• Parameterize K (spline, piecewise constant . . . ) by p ∈ RN .

• Organize measurments into data vector d ∈ RM.

• Write solver for discrete PDE to obtain solutions u ∈ RMx when

given p.

• Map u to data space with D : RMx → RM

evaluation at well locations, for example.

• Solve min‖D(u(p))−d‖2
2 or a regularized version of that

problem.

For us: M << N << Mx, so the PDE solve is the expensive part
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Surrogate Models

• Replace min f by min f̄ where f̄ is inexpensive
• Response surface:

quadratic, radial basis, neural net, . . .
• Coarse mesh version of PDE:

different grid, less physics, . . .
• Model reduction: Original PDE + smaller basis

Captures problem structure (still least squares)
Same code and same physics
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Bulding the reduced model

• Discretize PDE with A(p)u = f .

• Find basis Ū = [u1, . . . ,uK] that “captures” most
solutions.

• Replace Au = f with

Āū = ŪT AŪū = f̄ = ŪT f

So how do you get U?
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PODS

Proper Ortogonal Decomposition from fluid control
(Karhunen, 46)

• Collect snapshots W = [w1,w2, . . .wL] from time
dependent simulation.

• Take SVD of snapshots: UΣV T = W .

• Identify K for which σK+1 is “small”.

• Ū = [u1, . . . ,uK]

What’s L? What does “small” mean?
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Artificial time dependent problem

• Write problem as min f where f = RT R/2.

• ∇ f (p) = R′(p)R(p)

• Integrate p′ = −∇ f (p) for a few Euler steps.
Collect the u′s to get W .

• Proceed as in POD
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Optimization via Ψtc

Pseudo-Transient Continuation finds steady state solutions
of

du
dt

= −F(u)

by mimicing integration to steady state with the goal of
increasing the time step.
Simple forumlation

un+1 = un − (δ−1
n I +F ′(un))

−1F(un)

where {δn} is controled by Switched Evolution Relaxation:

(A)δn+1 = δn/‖F(un)‖ or (B)δn+1 = δn/‖xn − xn−1‖

C. T. Kelley – p.9



Optimization

General Idea: Higham, 1999 (also Fletcher 1987)

• min f → u′ = −∇ f (very old idea)

• Solve with Ψtc , manage step with TR approach

Liao-Qi-Qi 2004, Liao-Qi-K 2006

• Constraints → nonsmooth gradient

• Use generalized derivative and/or smoothing

• Ψtc with SER/TR step control
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Least Squares Example

Problem:

min f (x) where f (x) = RT (x)R(x)/2,

R : RN → RM, M > N.

∇ f (x) = R′(x)T R(x)

Gauss-Newton approximation to ∇2 f is H(x) = R′(x)T R′(x)
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Ψtc for nonlinear least squares

xn+1 = xn − (δ−1
n I +R′(xn)

T R(xn))
−1R′(xn)

T R(xn)

Levenberg-Marquardt if we use no second derivative
information.
Differences: management of δ (but see K. 1999)
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Bound Constrained Problems

Problem: minx∈Ω f (x) where

Ω = {x |Li ≤ (x)i ≤Ui}

Necessary conditions for optimality

F(x) = x−P(x−∇ f (x)) = 0

where

P(x)i =











Li if (x)i ≤ Li

(x)i if Li < (x)i < Ui

Ui if (x)i ≥Ui
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Ψtc for bound constraints

The dynamics
x′ = −F(x)

are stable and liminf ‖F(x)‖ = 0 (Liao-Qi-Qi)
But F is nonsmooth, in a direct Ψtc

xn+1 = xn − (δ−1
n I +F ′(xn))

−1F(xn)

you have to approximate F ′ carefully. If you do this,
convergence results of (K, Fowler 06) hold.
There’s an easier way.

C. T. Kelley – p.14



Projected Ψtc

xn+1 = P(xn − (δ−1
n I +Hr

n)
−1F(xn))

where Hr
n is the reduced Hessian.

Contrast with scaled gradient projection

xn+1 = P(xn − (Hr
n)

−1∇ f (xn)).
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Reduced Model Hessian

Given xn,Hn,εn, let Dn be the diagonal matrix

(Dn)ii =

{

1 if ‖un −P(un)‖ > εn

0 otherwise

Hr
n = I −Dn(I −Hn)Dn
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Three versions

Direct Ψtc :

xn+1 = xn − (δ−1
n I +F ′(xn))

−1F(xn)

Projected Ψtc :

xn+1 = P(xn − (δ−1
n I +Hr

n)
−1F(xn))

Projected gradient projection:

xn+1 = P(xn − (Hr
n)

−1∇ f (xn)).

Manage δ with SER or Trust Region
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Convergence?

Global and locally fast convergence if:

• Direct Ψtc : x(t) → x∗; SER or TR δ management

• Projected GP: Hr
n uniformly well conditioned + spd

• Projected Ψtc : x(t) → x∗

Hr
n either spd (TR) or inexact Newton condition (SER)

Our experiments (Liao, K, 06; this talk) say that SER works
best.
SER(B) is best for this application.
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