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Implicit Filtering

LWhat is this for?

What is the problem?

Ideally we like to solve
mfgn f(x)

where
Q={x|L<x<U}cRN

First order necessary conditions:
x = P(x — Vf(x)), where P(x) = max(L, min(x, U)).

But we have a few problems . ..
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Implicit Filtering
LWhat is this for?

f is unfriendly becase ...

m fis a “black box", so gradients are not available
m f is not everywhere defined in Q

m f can fail to return a value
m You get a failure flag instead

m You don't even get the right f when you call the funtion
m You get an error-infested approximation f

We will deal with these one at a time.

C. T. Kelley
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Implicit Filtering

L Implicit Filtering

Implicit Filtering and Coordinate Search

Who needs gradients when you can throw darts?
From a current point x and scale h evaluate f on the stencil

S(x,h)={z|z=x+x he;} NQ

If you find a better point than x, take it.
If the stencil fails to find a better point, i.e.

f(x)< min f
b= e, 1)

reduce h, say h < h/2.
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L Implicit Filtering

Theory for Coordinate Search: due to many people

If f is Lipschtiz continuously differentiable and {x,, h,} are the
points/scales from coordinate search, then
m The stencil fails infinitely often, and so ...
m h,—0
m liminf||x, — P(x, — VF(x,))| = 0.

Nice, but it's as slow as steepest descent.
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L Implicit Filtering

Implicit Filtering

After the function evaluations on the stencil either
m Shrink A if the stencil fails or . ..

m build a finite difference gradient
® maintain a quasi-Newton model Hessian
m see if the quasi-Newton direction leads to a better point

Much better than coordinate search.
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L Implicit Filtering

Theory for Implicit Filtering: Gilmore-K 95, K-11

If f is Lipschtiz continuously differentiable and {x,, h,} are the
points/scales from implicit filtering, and
m The stencil fails infinitely often then
m h,—0
m liminf||x, — P(x, — Vf(xa))| = 0.
Note: stencil failure is now an assumption instead of a conclusion.
Reason: quasi-Newton point may leave the grid.
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Implicit Filtering

L Hidden Constraints

Hidden Constraints

f is defined on D C Q
m You know x € D when f(x) = Nal.

m The cost of an evaluation of f for x € D may vary.
m Sources of hidden constraints
m failure of internal solvers
m internal tests and sanity checks
stiffness, risk, reliability
m non-physical intermediate results
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L Hidden Constraints

First-order Necessary Conditions: Audet-Dennis 06

Assume D is regular. This means that the Tangent cone
TSH(x) = cl{v|x + tv € D for all sufficiently small ¢ > 0},

is the closure of its non-empty interior.
First-order necessary conditions at x € D are

0f(x)/0v > 0 for all v € Tp(x)

if Vf is Lipschitz continuous.
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L Hidden Constraints

Extra Directions
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L Hidden Constraints

Missing Directions and the Stencil Gradient

Not all points in S need be in D.
Define the stencil gradient Vf(x, V, h) as the solution of

min ||[AVTy —6(f,x,V, h
yeRNH y—4( )l

where V' is the matrix of directions and

f(x+ hv1) — f(x)
S(Fx V) = f(x+ hv-2) — f(x)

Flx + hvi) — F(x)

We use Vf(x, V, h) in the quasi-Newton method.
So what's V7
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L Hidden Constraints

Directions

Here are the rules

m The call to f must work, so
X + hvj- €D

m If x is the only point in D, shrink.
m You have to have enough directions to avoid missing D.

So, your direction set has to be “rich” and must vary with the
iteration.
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L Hidden Constraints

Rich Direction Sets: Audet-Dennis, Finkel-K

V = {V,} is rich if
m for any unit vector v and
m any subsequence W = {W,, } of V

liminf min |jw—v|| =0.
Jj—oo WEW,,J.

Example: add one or more random directions to the coordinate
directions.
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L Hidden Constraints

Convergence for Implicit Filtering

m Vf Lipschitz

m Search and simplex gradient use V,, at iteration n
m D is regular

m Stencil fails infinitely often

then any limit point of the implicit filtering iteration satisfies the
necessary conditions.
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LEmbedded Monte Carlo Simulations

Embedded Monte Carlo Simulations: Chen-K 14

Suppose we can't evaluate f, but instead evaluate

f(X, NMC)

where Npc is the number of “trials”.

We assume that the errors are like Monte Carlo integration.
Unconstrained stuff: Trosset 00, Anderson-Ferris 01, Zhang-Kim
03, Deng-Ferris 07
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Implicit Filtering
LEmbedded Monte Carlo Simulations

Just like MC high-dimensional integration

There is cr : (0,00) — (0, 00) such that
Forall § >0, and x € D

; cF(9)
Prob <\f(x) — f(x, Nmc)| > NMC> <0

and

Prob (F(x, Nyc) = Na/v) < <)

Numc
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LEmbedded Monte Carlo Simulations

Algorithm and Theory

If x¢ D,

Prob (F(x, Nyc) = Na/v) < <)

Nwmic

The algorithm uses f and increases Ny, C as h decreases.

n||—>n;o(hn V NI?/IC)_1 =0.

Do this and the theory still holds with probability one.
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L Example

Example: Water Resource Policy
Dillard, Characklis, Kirsch, Ramsey, K: 06-11
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L Example
Properties of the Example

m six variables
m two linear constraints

m two real hidden constraints

Does the theory reflect the practice?
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Implicit Filtering
L Example
Software: imfil.m, K-11

MATLAB implicit filtering software
Handles linear constraints via tangent directions

[
[

m Rich stencils by adding random directions

m f can be scale aware and change Ny¢c as h varies
[

Documentation + book at
http://wwwéd.ncsu.edu/ " ctk/imfil .html

Code for this example LRGV*
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L Ex:

ample

Do Random Directions Help?

Add k random directions with Ny, = 500.
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L Example

Scale Aware Computation; Ny,c = 100,...4.9M

12 runs; 24 random directions; 1891 calls to f; over 1000 failures

Function Value

0
Model Calls
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LCcmclusicms

Conclusions

Sampling methods for black-box functions

]
m Hidden constraints and random noise
m Asymptotic convergence theory

E

Examples
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