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Implicit Filtering

What is this for?

What is the problem?

Ideally we like to solve
min

Ω
f (x)

where
Ω = {x | L ≤ x ≤ U} ⊂ RN

First order necessary conditions:

x = P(x −∇f (x)), where P(x) = max(L,min(x ,U)).

But we have a few problems . . .
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Implicit Filtering

What is this for?

f is unfriendly becase . . .

f is a “black box”, so gradients are not available

f is not everywhere defined in Ω

f can fail to return a value
You get a failure flag instead

You don’t even get the right f when you call the funtion

You get an error-infested approximation f̂

We will deal with these one at a time.
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Implicit Filtering

What is this for?
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Implicit Filtering

Implicit Filtering

Implicit Filtering and Coordinate Search

Who needs gradients when you can throw darts?
From a current point x and scale h evaluate f on the stencil

S(x , h) = {z | z = x ± hei} ∩ Ω

If you find a better point than x , take it.
If the stencil fails to find a better point, i.e.

f (x) ≤ min
z∈S(x ,h)

f (z)

reduce h, say h← h/2.
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Implicit Filtering

Implicit Filtering

Theory for Coordinate Search: due to many people

If f is Lipschtiz continuously differentiable and {xn, hn} are the
points/scales from coordinate search, then

The stencil fails infinitely often, and so . . .

hn → 0
lim inf ‖xn − P(xn −∇f (xn))‖ = 0.

Nice, but it’s as slow as steepest descent.
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Implicit Filtering

Implicit Filtering

Implicit Filtering

After the function evaluations on the stencil either

Shrink h if the stencil fails or . . .

build a finite difference gradient
maintain a quasi-Newton model Hessian
see if the quasi-Newton direction leads to a better point

Much better than coordinate search.
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Implicit Filtering

Implicit Filtering

Theory for Implicit Filtering: Gilmore-K 95, K-11

If f is Lipschtiz continuously differentiable and {xn, hn} are the
points/scales from implicit filtering, and

The stencil fails infinitely often then

hn → 0
lim inf ‖xn − P(xn −∇f (xn))‖ = 0.

Note: stencil failure is now an assumption instead of a conclusion.
Reason: quasi-Newton point may leave the grid.
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Implicit Filtering

Hidden Constraints

Hidden Constraints

f is defined on D ⊂ Ω

You know x 6∈ D when f (x) = NaN.

The cost of an evaluation of f for x 6∈ D may vary.

Sources of hidden constraints

failure of internal solvers
internal tests and sanity checks
stiffness, risk, reliability
non-physical intermediate results
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Implicit Filtering

Hidden Constraints

First-order Necessary Conditions: Audet-Dennis 06

Assume D is regular. This means that the Tangent cone

TCL
D (x) = cl{v | x + tv ∈ D for all sufficiently small t > 0},

is the closure of its non-empty interior.
First-order necessary conditions at x ∈ D are

∂f (x)/∂v ≥ 0 for all v ∈ TD(x)

if ∇f is Lipschitz continuous.
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Implicit Filtering

Hidden Constraints

Extra Directions
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Implicit Filtering

Hidden Constraints

Missing Directions and the Stencil Gradient

Not all points in S need be in D.
Define the stencil gradient ∇f (x ,V , h) as the solution of

min
y∈RN

‖hV T y − δ(f , x ,V , h)‖

where V is the matrix of directions and

δ(f , x ,V , h) =


f (x + hv1)− f (x)
f (x + hv2)− f (x)

...
f (x + hvK )− f (x)

 .

We use ∇f (x ,V , h) in the quasi-Newton method.
So what’s V ?
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Implicit Filtering

Hidden Constraints

Directions

Here are the rules

The call to f must work, so

x + hvj ∈ D

If x is the only point in D, shrink.

You have to have enough directions to avoid missing D.

So, your direction set has to be “rich” and must vary with the
iteration.
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Implicit Filtering

Hidden Constraints

Rich Direction Sets: Audet-Dennis, Finkel-K

V = {Vn} is rich if

for any unit vector v and

any subsequence W = {Wnj} of V
lim inf
j→∞

min
w∈Wnj

‖w − v‖ = 0.

Example: add one or more random directions to the coordinate
directions.
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Implicit Filtering

Hidden Constraints

Convergence for Implicit Filtering

If

∇f Lipschitz

Search and simplex gradient use Vn at iteration n

D is regular

Stencil fails infinitely often

then any limit point of the implicit filtering iteration satisfies the
necessary conditions.
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Implicit Filtering

Embedded Monte Carlo Simulations

Embedded Monte Carlo Simulations: Chen-K 14

Suppose we can’t evaluate f , but instead evaluate

f̃ (x ,NMC )

where NMC is the number of “trials”.
We assume that the errors are like Monte Carlo integration.
Unconstrained stuff: Trosset 00, Anderson-Ferris 01, Zhang-Kim
03, Deng-Ferris 07
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Implicit Filtering

Embedded Monte Carlo Simulations

Just like MC high-dimensional integration

There is cF : (0,∞)→ (0,∞) such that
For all δ > 0, and x ∈ D

Prob

(
|f (x)− f̃ (x ,NMC )| > cF (δ)√

NMC

)
< δ

and

Prob
(
f̃ (x ,NMC ) = NaN

)
≤ cF (δ)√

NMC
.
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Implicit Filtering

Embedded Monte Carlo Simulations

Algorithm and Theory

If x 6∈ D,

Prob
(
f̃ (x ,NMC ) = NaN

)
≤ cF (δ)√

NMC
.

The algorithm uses f̃ and increases NMC as h decreases.

lim
n→∞

(hn

√
Nn
MC )−1 = 0.

Do this and the theory still holds with probability one.
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Implicit Filtering

Example

Example: Water Resource Policy
Dillard, Characklis, Kirsch, Ramsey, K: 06-11
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Implicit Filtering

Example

Properties of the Example

six variables

two linear constraints

two real hidden constraints

Does the theory reflect the practice?
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Implicit Filtering

Example

Software: imfil.m, K-11

MATLAB implicit filtering software

Handles linear constraints via tangent directions

Rich stencils by adding random directions

f can be scale aware and change NMC as h varies

Documentation + book at
http://www4.ncsu.edu/~ctk/imfil.html

Code for this example LRGV*
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Implicit Filtering

Example

Do Random Directions Help?

Add k random directions with NMC = 500.
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Implicit Filtering

Example

Scale Aware Computation; NMC = 100, . . . 4.9M

12 runs; 24 random directions; 1891 calls to f ; over 1000 failures
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Implicit Filtering

Conclusions

Conclusions

Sampling methods for black-box functions

Hidden constraints and random noise

Asymptotic convergence theory

Examples
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