

Derivative-Free Optimization of Functions with Embedded Monte Carlo Simulations

C. T. Kelley

NC State University

tim_kelley@ncsu.edu

Joint with Xiaojun Chen

Supported by ARO, NSF, DOE(CASL/LANL)

Copper, April 8, 2014

Outline

- 1** What is this for?
- 2** Implicit Filtering
- 3** Hidden Constraints
- 4** Embedded Monte Carlo Simulations
- 5** Example
- 6** Conclusions

What is the problem?

Ideally we like to solve

$$\min_{\Omega} f(x)$$

where

$$\Omega = \{x \mid L \leq x \leq U\} \subset R^N$$

First order necessary conditions:

$$x = \mathcal{P}(x - \nabla f(x)), \text{ where } \mathcal{P}(x) = \max(L, \min(x, U)).$$

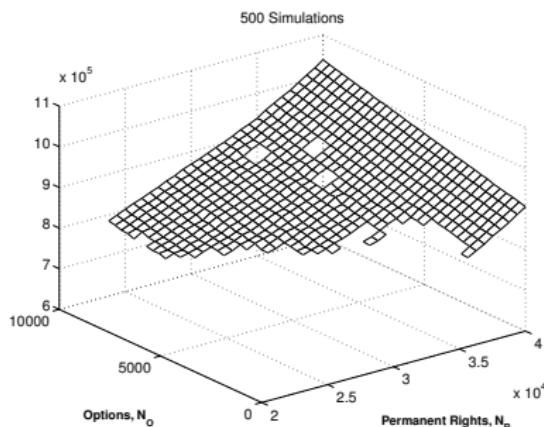
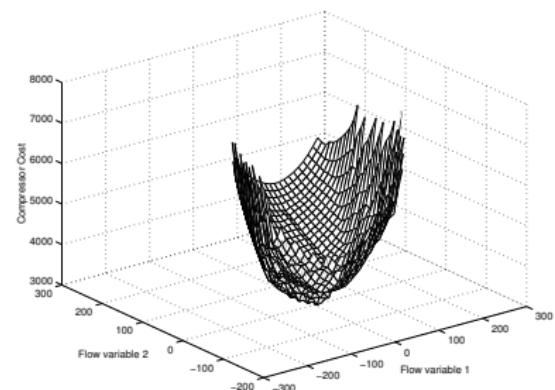
But we have a few problems . . .

f is unfriendly because . . .

- f is a “black box”, so gradients are not available
- f is not everywhere defined in Ω
 - f can fail to return a value
 - You get a failure flag instead
- You don't even get the right f when you call the function
 - You get an error-infested approximation \hat{f}

We will deal with these one at a time.

Two Landscapes



Implicit Filtering and Coordinate Search

Who needs gradients when you can throw darts?

From a current point x and scale h evaluate f on the stencil

$$S(x, h) = \{z \mid z = x \pm he_i\} \cap \Omega$$

If you find a better point than x , take it.

If the stencil fails to find a better point, i.e.

$$f(x) \leq \min_{z \in S(x, h)} f(z)$$

reduce h , say $h \leftarrow h/2$.

Theory for Coordinate Search: due to many people

If f is Lipschitz continuously differentiable and $\{x_n, h_n\}$ are the points/scales from coordinate search, then

- The stencil fails infinitely often, and so . . .
 - $h_n \rightarrow 0$
 - $\liminf \|x_n - \mathcal{P}(x_n - \nabla f(x_n))\| = 0.$

Nice, but it's as slow as steepest descent.

Implicit Filtering

After the function evaluations on the stencil either

- Shrink h if the stencil fails or ...
 - build a finite difference gradient
 - maintain a quasi-Newton model Hessian
 - see if the quasi-Newton direction leads to a better point

Much better than coordinate search.

Theory for Implicit Filtering: Gilmore-K 95, K-11

If f is Lipschitz continuously differentiable and $\{x_n, h_n\}$ are the points/scales from implicit filtering, **and**

- The stencil fails infinitely often then
 - $h_n \rightarrow 0$
 - $\liminf \|x_n - \mathcal{P}(x_n - \nabla f(x_n))\| = 0.$

Note: stencil failure is now an assumption instead of a conclusion.

Reason: quasi-Newton point may leave the grid.

Hidden Constraints

f is defined on $\mathcal{D} \subset \Omega$

- You know $x \notin \mathcal{D}$ when $f(x) = \text{NaN}$.
- The cost of an evaluation of f for $x \notin \mathcal{D}$ may vary.
- Sources of hidden constraints
 - failure of internal solvers
 - internal tests and sanity checks
 - stiffness, risk, reliability
 - non-physical intermediate results

First-order Necessary Conditions: Audet-Dennis 06

Assume \mathcal{D} is regular. This means that the Tangent cone

$$T_{\mathcal{D}}^{CL}(x) = cl\{v \mid x + tv \in \mathcal{D} \text{ for all sufficiently small } t > 0\},$$

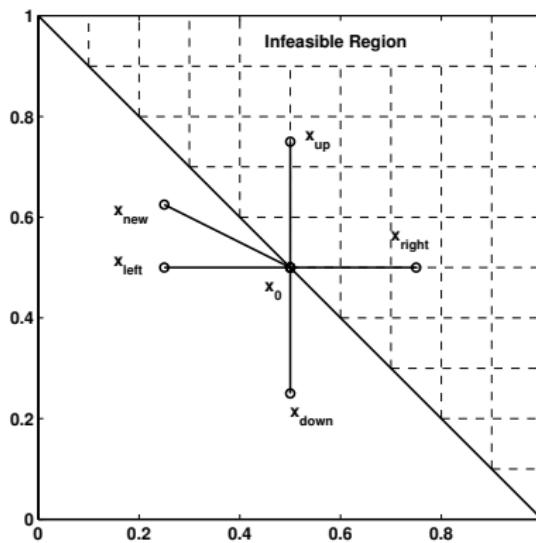
is the closure of its non-empty interior.

First-order necessary conditions at $x \in \mathcal{D}$ are

$$\partial f(x)/\partial v \geq 0 \text{ for all } v \in T_{\mathcal{D}}(x)$$

if ∇f is Lipschitz continuous.

Extra Directions



Missing Directions and the Stencil Gradient

Not all points in S need be in \mathcal{D} .

Define the stencil gradient $\nabla f(x, V, h)$ as the solution of

$$\min_{y \in R^N} \|hV^T y - \delta(f, x, V, h)\|$$

where V is the matrix of directions and

$$\delta(f, x, V, h) = \begin{pmatrix} f(x + hv_1) - f(x) \\ f(x + hv_2) - f(x) \\ \vdots \\ f(x + hv_K) - f(x) \end{pmatrix}.$$

We use $\nabla f(x, V, h)$ in the quasi-Newton method.
So what's V ?

Directions

Here are the rules

- The call to f must work, so

$$x + hv_j \in \mathcal{D}$$

- If x is the only point in \mathcal{D} , shrink.
- You have to have enough directions to avoid missing \mathcal{D} .

So, your direction set has to be “rich” and must vary with the iteration.

Rich Direction Sets: Audet-Dennis, Finkel-K

$\mathcal{V} = \{V_n\}$ is rich if

- for any unit vector v and
- any subsequence $\mathcal{W} = \{W_{n_j}\}$ of \mathcal{V}

$$\liminf_{j \rightarrow \infty} \min_{w \in W_{n_j}} \|w - v\| = 0.$$

Example: add one or more random directions to the coordinate directions.

Convergence for Implicit Filtering

If

- ∇f Lipschitz
- Search and simplex gradient use V_n at iteration n
- \mathcal{D} is regular
- Stencil fails infinitely often

then any limit point of the implicit filtering iteration satisfies the necessary conditions.

Embedded Monte Carlo Simulations: Chen-K 14

Suppose we can't evaluate f , but instead evaluate

$$\tilde{f}(x, N_{MC})$$

where N_{MC} is the number of "trials".

We assume that the errors are like Monte Carlo integration.

Unconstrained stuff: Trosset 00, Anderson-Ferris 01, Zhang-Kim 03, Deng-Ferris 07

Just like MC high-dimensional integration

There is $c_F : (0, \infty) \rightarrow (0, \infty)$ such that

For all $\delta > 0$, and $x \in \mathcal{D}$

$$\text{Prob} \left(|f(x) - \tilde{f}(x, N_{MC})| > \frac{c_F(\delta)}{\sqrt{N_{MC}}} \right) < \delta$$

and

$$\text{Prob} \left(\tilde{f}(x, N_{MC}) = \text{NaN} \right) \leq \frac{c_F(\delta)}{\sqrt{N_{MC}}}.$$

Algorithm and Theory

If $x \notin \mathcal{D}$,

$$\text{Prob} \left(\tilde{f}(x, N_{MC}) = \text{NaN} \right) \leq \frac{c_F(\delta)}{\sqrt{N_{MC}}}.$$

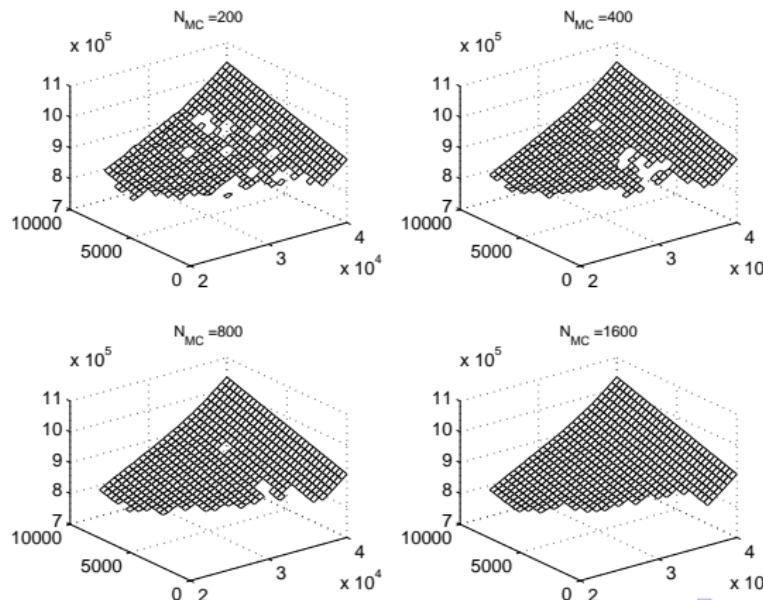
The algorithm uses \tilde{f} and increases N_{MC} as h decreases.

$$\lim_{n \rightarrow \infty} (h_n \sqrt{N_{MC}^n})^{-1} = 0.$$

Do this and the theory still holds with probability one.

Example: Water Resource Policy

Dillard, Characklis, Kirsch, Ramsey, K: 06-11



Properties of the Example

- six variables
- two linear constraints
- two real hidden constraints

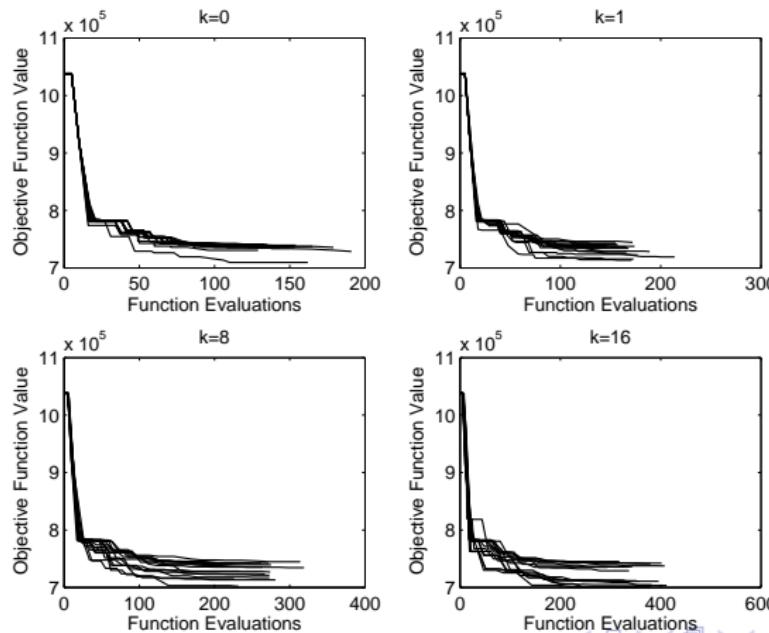
Does the theory reflect the practice?

Software: imfil.m, K-11

- MATLAB implicit filtering software
- Handles linear constraints via tangent directions
- Rich stencils by adding random directions
- f can be scale aware and change N_{MC} as h varies
- Documentation + book at
<http://www4.ncsu.edu/~ctk/imfil.html>
- Code for this example LRGV*

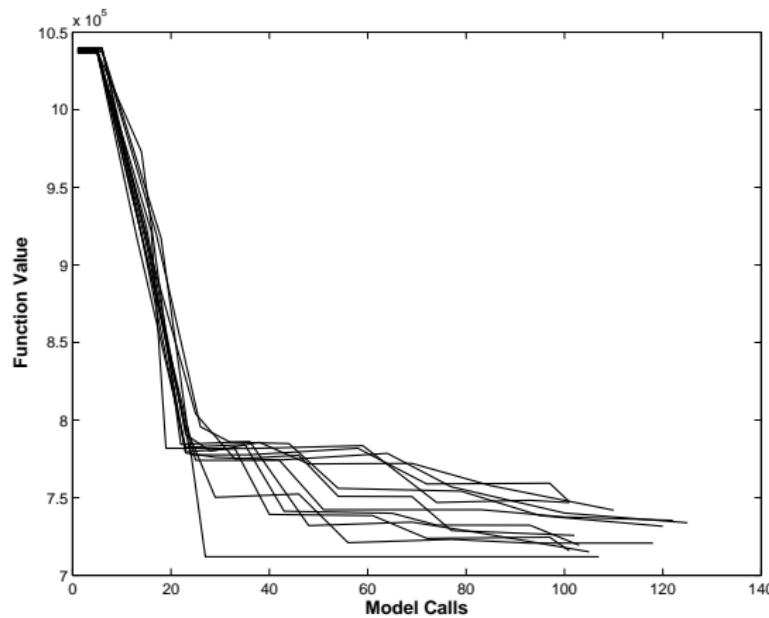
Do Random Directions Help?

Add k random directions with $N_{MC} = 500$.



Scale Aware Computation; $N_{MC} = 100, \dots, 4.9M$

12 runs; 24 random directions; 1891 calls to f ; over 1000 failures



Conclusions

- Sampling methods for black-box functions
- Hidden constraints and random noise
- Asymptotic convergence theory
- Examples