i '
~#.....':."""':""’”I’ ’/&\\\\\

User’s Guide to IFFCO

T. D. Choi
O. J. Eslinger
P. A. Gilmore
C. T. Kelley
H. A. Patrick

Version of May 18, 2001
Copyright (©2000 by C. T. Kelley

Newton’s Method

Contents

Preface iii
1 Implicit Fitering 1
1.1 Sampling Methods for Optimization 1

2 Introduction to IFFCO 3
2.1 Serial and Parallel Implementations 4
2.2 Supported Platforms Lo 5
2.3 Availability L 5
2.4 Documentation oo b)
2.5 Contact for Questions and Problems 5

3 Getting Started with IFFCO 7
3.1 Unpacking IFFCO 7
3.2 Configuring the Makefile 8
3.21 Serialo 9

322 PVM ... 9

323 MPI e 9

3.3 Running the Test Program 10
3.3.1 Compiling the test program 10

3.3.2 Executing the test program 10

3.3.3 Interpreting the test program output 12

3.3.4 Modifying the test problem parameters 12

3.4 Using IFFCO the Fast and Easy Way 13

4 General Use of IFFCO 17
4.1 Calling Sequence 17
4.1.1 Objective function func 17

4.1.2 Initialiterate x L. oo 19

413 Boundsu, 1 19

4.1.4 Function scaling fscale 19

4.1.5 Difference increment limits minh, maxh 19

4.1.6 Function dimensionn 20

4.1.7 Tteration limits maxit 20

Contents

4.1.8 Number of restartsrestart
4.1.9 Level of output writ
4.1.10 Termination criterion at a scale termtol

4.1.11 Minimum function value £
4.1.12 Line search limit maxcuts

4.1.13 Optionsoption.
4.1.14 Extra data for the function evaluation
4.2 Other Parameters.
43 Return Values.
4.4 Output
4.4.1 iffco.out,

442 points.out

5 Parallel Operation of IFFCO

5.1 Parallel Difference Gradient Computation
5.2 Parallel Line Search

6 Trouble Shooting
6.1 Imput Errors.
6.2 Line Search Failure
6.2.1 Line search failures and poor results

6.2.2 Line search failures and reasonable results

6.3 Line search failure at small scales

6.4 Poor Answers
6.4.1 No convergence problems and poor results
6.4.2 Smallmaxh
6.43 Largeminh

A IFFCO Subroutines
Bibliography

Index

Preface

Implicit filtering is a projected quasi-Newton method for bound constrained
optimization problems. The gradients are computed with a finite difference and the
difference gradient varies as the optimization progresses.

IFFCO is a FORTRAN implementation of the implicit filtering method. This
book is a complete reference to Version 2 of IFFCO, covering installation, testing,
and use of the serial, PVM, and MPI implementations.

Preface

Chapter 1

Implicit Fitering

1.1 Sampling Methods for Optimization

Chapter 1. Implicit Fitering

Chapter 2

Introduction to IFFCO

IFFCO (Implicit Filtering for Constrained Optimization) is an algorithm for op-
timizing functions with multiple minima. IFFCO is designed to solve problems
subject to simple box constraints. The mathematical description of these problems
is:

mégf:R"—)R where Q={z € R"|I'<z'<u',i=1,...,n}, (2.1)
T

where [* and u! are the lower and upper bounds respectively on the ith variable.
The set @), defined by the constraints on the variables, is called the hyper-box.
IFFCO was designed to minimize functions of the form:

f@) = f@) + d() . (2.2)

In (2.2) f(x) is a smooth function with a simple form. For example, f(z) could be
a convex quadratic. ¢(x) is a low-amplitude high-frequency perturbation, which we
refer to as noise in this document. In this context, low amplitude means

max |§(z)| < max| /()| (2.3)

¢(z) need not be continuous. IFFCO is particularly effective on problems where the
amplitude of ¢(z) decays near local minima of f(z). It is not necessary to be able
to calculate f(z) and ¢(z). It is only necessary that f(z) behaves like a function
that satisfies Equation 2.2.

Implicit filtering has been successfully applied to problems in semiconductor
design [17-20], high-field magnets [4,11,16], automotive engineering [5-7], and geo-
sciences [1,2,10,15]. The algorithm used in IFFCO is analyzed in [9, 14]. IFFCO
and algorithms like IFFCO are applied to problems far more complex that those
that satisfy the hypotheses of the theoretical results.

IFFCO is a variation on the gradient projection method described in [3], that
uses a sequence of finite difference steps (scales) to approximate the gradient. A
brief outline of the algorithm used in IFFCQO is given below.

3

4 Chapter 2. Introduction to IFFCO

Algorithm 2.1 Simple IFFCO algorithm

Pick initial x and h; find f(z) and the Difference Gradient Vy, f(x).
Initialize the model Hessian B to the identity
while h and V,, f(x) satisfy conditions do
Use V,f(z) and B to calculate a descent direction d. This step is a quasi-
Newton step.
Perform a line search in the direction d, and signal success if some criteria are
met.
if line search was successful then
Accept new point and project into the box Q.
else
h <+ h/2
end if
Calculate the Difference Gradient Vj, f(x).
Update B with either a rank-one SR1 update, or a rank-two BFGS update.
end while

A variation of Algorithm 2.1 is to restart Algorithm 2.1 using the last point
obtained in the iterative process as the next initial point until a point is obtained
that satisfies the termination criteria at every scale. A point that satisfies the
termination criteria at every scale is called a minimum at all scales.

2.1 Serial and Parallel Implementations

Both serial and parallel versions of IFFCO are included in the distribution package.
Both are implemented in ANSI standard Fortran 77. There are two separate parallel
versions, one using PVM 3.4 calls and one using MPI 1.1 standard calls. Both of
these parallel versions operate in exactly the same way, and we often refer to them
collectively as “parallel IFFCO” or “the parallel version.” Users with long function
evaluations (at least several seconds in duration) will see the greatest benefit from
using the parallel version.

The serial version is essentially a straight-forward implementation of Algo-
rithm 2.1. The parallel version seeks to improve the performance of this algorithm
by evaluating the objective function in parallel at two stages: during the difference
gradient calculation and during the line search.

Externally, using the parallel version is no different from using the serial ver-
sion except for the extra overhead of setting up the parallel environment. The calling
sequence and output are exactly the same. In most cases, the minimum found by
both versions will be the same or about the same. The number of function evalu-
ations required for the parallel version of IFFCO will usually exceed slightly that
required for the serial version, but since the added function evaluations are carried
out in parallel little or no extra wall-clock time is used. This differences is explained
in Section 5.2.

Because of the way IFFCO is parallelized it can use at most maz(2n + 1,m)

2.2. Supported Platforms 5

processors, where n is the dimension of the objective function and m is the maximum
number of cutbacks performed in the line search. Using more processors will not
improve the performance of IFFCO.

2.2 Supported Platforms

The serial version of IFFCO should compile and run on any system with a UNIX-
like operating system and a Fortran 77 compiler. In addition, the parallel version
requires PVM 3.4 or an implementation of MPI which supports the MPI 1.1 stan-
dard (e.g. LAM/MPI 6.3, MPICH 1.2.1, and almost every other recent version of
MPI).

2.3 Awvailability

The latest version of IFFCO can be downloaded from the IFFCO web page:
http://wwwi.ncsu.edu/~ ctk/iffco.html

All three versions of IFFCO (serial, PVM, and MPI) are distributed in the
same package.

2.4 Documentation

This manual is the main source of information about using IFFCO. The IFFCO
distribution includes a “readme” file containing most of the information in Chap-
ter 3. In addition, each subroutine of IFFCO is documented by comments in the
source code.

Tim: add something about IFFCO papers

2.5 Contact for Questions and Problems
The primary contact for IFFCO is:

C.T. Kelley

Department of Mathematics

Center for Research in Scientific Computation
North Carolina State University

Raleigh, NC 27695-8205

Tim Kelley@ncsu.edu

Electronic mail is the optimal way to contact Kelley.

Chapter 2. Introduction to IFFCO

Chapter 3

Getting Started with
IFFCO

This chapter explains how to install IFFCO and what is included in the installation
package. Checking that IFFCO is installed correctly by running it on the included
test problems is also discussed. The last section of this chapter is a “quick start”
guide of sorts, which describes how to use IFFCO on your own objective function
in the most straight-forward manner.

3.1 Unpacking IFFCO

To unpack IFFCO, copy the distribution file IFFCO0.tar.gz (see Section 2.3 for in-
formation on obtaining IFFCO) to the directory above where you want to install
IFFCO. Then issue the commands:

> gunzip IFFCO.tar.gz
> tar xf IFFCO.tar

This will create the directory iffco/ and place all IFFCO files there.

IFFCQ’s directory structure is quite simple; it is diagrammed in Table 3.1.
The main directory, iffco/, contains a readme file; the makefile; a script for creating
the serial, PVM, and MPI versions of IFFCO from the combined source file; and
batch files for submitting parallel IFFCO jobs under the IBM Parallel Operating
Environment. Executable files and the output files IFFCO creates are also placed
here.

Table 3.1. IFFCO’s directory structure

iffco/ Main directory
src/ Source code files
testdata/ Test problem configuration files

8 Chapter 3. Getting Started with IFFCO

The subdirectory src/ contains all IFFCO source code files. Table 3.2 de-
scribes the contents of each source file. The separate source code files for the serial,
PVM, and MPIT versions of IFFCO require a bit of explanation. Since the three ver-
sions contain much common code, we work with a master file, iffco.F, during our
development and use the Fortran preprocessor on it to generate the three separate
files for distribution.

If you want to alter IFFCQO’s source code and plan to use only one version, you
can make whatever changes you want solely in the source code file for that version.
If you want to use more than one version, you might want to modify iffco.F and
then create the separate files from that. The script iffco/makevers is provided for
creating ser_iffco.f, mpi_iffco.f, and pvm_iffco.f from iffco.F.

Table 3.2. Files in iffco/srec.

iffco.F The master file; contains all three versions of IFFCO,
separated by preprocessor directives.

ser_iffco.f Serial version of IFFCO.

pvm_iffco.f PVM version of IFFCO.

mpi_iffco.f MPI version of IFFCO.

ser_main.f Driver program for the serial version of the test
problems.

par main.f Driver program for the parallel versions of the test
problems.

testfunc.f Function evaluation subroutines for the test problems.

ser_samplemain.f Sample driver program for serial IFFCO.
par_sample main.f Sample driver program for parallel version of IFFCO.
sample _func.f Sample function evaluation subroutine.
vtf.f LINPACK subroutines used by IFFCO. These subroutines
are included in the IFFCO distribution to avoid
requiring that LINPACK be installed and to avoid
the unnecessary complication of linking with
LINPACK.

The other subdirectory of iffco/, testdata/, contains configuration files for
each of the test problems.

3.2 Configuring the Makefile

There are four platform-specific variables in iffco/Makefile. To compile IFFCO,
these must be set properly. Table 3.3 lists the variables and their meanings. All
four are defined near the top of the makefile, and example settings (in comments)
are provided for several platforms.

3.2. Configuring the Makefile 9

Table 3.3. Variables in iffco/Makefile.

F77 The command to use for compiling Fortran 77 code.

INCLUDEDIR The location of the PVM header file (fpvm3.h) or the
MPI header file (mpif.h).

LIBDIR The location of PVM or MPI libraries.

LIBS The names of the PVM or MPI libraries to link with.

3.2.1 Serial

To compile the serial version, you need only set the variable F77 to the command
used to compile Fortran 77 programs on your system. The default is £77. The other
three variables can be left at their defaults.

3.2.2 PVM

If PVM is configured in the standard way on your system, the following settings
should allow you to compile the PVM version of IFFCO:
F77 = £77
INCLUDEDIR = $(PVM_ROOT)/include
LIBDIR = $(PVM_ROOT)/1ib/$(PVM_ARCH)
LIBS = -1fpvm3 -lpvm3 -lgpvm3

Note that the environment variable PVM_ROOT must be set to the path of the
main PVM directory and the environment variable PVYM_ARCH must be set to the
architecture type for your system. These variables are usually set when PVM is
installed. If these variables are not set properly, or if the settings above do not
work for your system, contact your system administrator for help.

3.2.3 MPI

Since there is so much variation among MPI packages, it is impossible to give one
set, of settings that will work on most systems. If you want to use the MPI version
of IFFCO, check the makefile to see if settings for your MPI package are already
there. If they are not, or if the specified settings do not work properly, contact your
system administrator for help.

Sometimes, MPI packages include a compiler or compiler script which auto-
matically includes the MPI header file and links in the appropriate libraries. If this
is the case, you can set F77 to that command and leave the other three variables at
their default values. For instance, LAM/MPI 6.3 provides hf77 for compiling For-
tran 77 code using MPI (the analogous command under MPICH 1.2.1 is mpif77).
Therefore, the following settings should work on a system using LAM/MPI 6.3:
F77 = hf77
INCLUDEDIR = .

LIBDIR = .
LIBS =

10 Chapter 3. Getting Started with IFFCO

3.3 Running the Test Program

To help you verify that you have correctly installed IFFCO, the distribution comes
with a suite of twelve test problems. The test problem subroutines used were
written by Jorg Gablonsky. Three of the functions are simple constant, linear,
and quadratic functions in two dimensions. Seven are functions originally given
by Dixon and Szeg6 [8]. These problems have been widely used to compare global
optimization algorithms [8,12,13]. The remaining two come from Yao [21].

Test programs have been included to run IFFCO on all the test problems and
compare the results your installation of IFFCO returns to control results. The test
programs inspect 1.) the number of function evaluations IFFCO used to find a
minimum and 2.) the value of the objective function at the minimum found. These
two pieces of data must match the control results with a relative error no greater
than 0.01 for the results to be considered “correct.”

The control results were generated on an IBM SP/2 under AIX Version 4
Release 3. The serial version was compiled with x1f. The parallel versions were
compiled with the script mpx1f. The PVM version used AIX4SP2 header files and
libraries in PVM 3.4; the MPI version was compiled using MPI header files and li-
braries in the IBM Parallel Environment for AIX, Version 2 Release 4. Both parallel
versions were run on two processors using IBM’s Parallel Operating Environment.

3.3.1 Compiling the test program

If you have already set the makefile variables as described in Section 3.2, compile
the appropriate test program by typing

> make ser_test

for the serial version,

> make pvm_test

for the PVM version, or

> make mpi_test

for the MPI version.

3.3.2 Executing the test program

The process for running the test program varies depending on which version of
IFFCO you want to use.

Serial

To run the serial version of the test program, simply type the command
> ser_test
from the iffco/ directory.

PVM

Since we ran the PVM test program on two processors to generate the control
results, you should also run the test program on two processors to allow a valid

3.3. Running the Test Program 11

comparison between the results on your system and the control results. Changing
the number of processors may affect the number of function evaluations required.
It should not significantly affect the minimum found.

On most systems, you will run the PVM version of IFFCO from the PVM
console. To do this, you need to first set your working directory and executable
path to the directory in which you installed IFFCO. You can do this by adding the
following line at the top of your hostfile:

* wd=$IFFCO ep=$IFFCO:$PVM ROOT/bin/$PVM_ARCH

where $IFFCO is the full path name of the directory where you installed IFFCO,
$PVM_ROOT is the directory where PVM is installed on your system, and $PVM_ARCH
is the PVM architecture type of your system.

Then, start PVM with that hostfile:
> pvm hostfile
and run pvm_test from the console:
pvm> spawn -2 -> pvm_test

If you use a batch system instead of the PVM console to run parallel pro-
grams, submit the program pvm test through that system. A batchfile for use with
11submit in the IBM Parallel Operating Environment, iffco/pvm test.cmd, is in-
cluded in the IFFCO distribution. If you do use this batchfile, note that it specifies
three processors. This is because under the Parallel Operating Environment, one
processor is dedicated to managing PVM. Only the other two actually run the test
program. You can submit the test program to run by typing:

> 1llsubmit pvm_test.cmd

MPI

Since we ran the MPI test program on two processors to generate the control results,
you should also run the test program on two processors to allow a valid comparison
between the results on your system and the control results. Changing the number
of processors may affect the number of function evaluations. It should not affect
the minimum found.

On most other systems, the command for running the test program under
MPI on two processors is:

mpirun -np 2 mpi_test
or something similar.

If you use a batch system to run parallel programs, submit the program
mpi_test through that system. A batchfile for use with 11lsubmit in the IBM
Parallel Operating Environment, iffco/mpi_test.cmd, is included in the IFFCO
distribution. You can submit the test program to run by typing;:

> llsubmit mpi_test.cmd

12 Chapter 3. Getting Started with IFFCO

3.3.3 Interpreting the test program output

For each problem, the test program will print to standard output a brief diagnostic
message. If the results of running IFFCO on problem n are close enough (have a
relative error no greater than 0.01) to the control results, the test program will print
Problem n: [Problem name] worked
If they are not close enough, the test program will print
Problem n: [Problem name] failed

If IFFCO solves all test problems correctly, it is running properly on your sys-
tem. If one or more test problems fail, all is not lost. Look at the file iffco/logfile,
where the test program’s results and the control results are tabulated for each prob-
lem. Inspect the output for the problems that failed. If the test and control values
for minimum (Min) and number of function evaluations (Fevals) are fairly close,
chances are IFFCO is working properly and the results simply aren’t within the
test program’s tolerance for “correctness.” These kinds of disagreements can be
caused by differences between the floating point arithmetic on your system and the
system used to calculate the control results.

3.3.4 Modifying the test problem parameters

Modifying the test problem parameters should normally not be necessary, but it
may be interesting to experiment with them to learn the effect each parameter has
on the algorithm. The parameters IFFCO uses for each test problem are stored in
configuration files in the directory iffco/testdata. There is one configuration file
per test problem. The format of the configuration files is one parameter per line,
like so:

Dimension
Starting point

Upper bounds

Lower bounds

O O O OO uw;m

Scaling
.4414062500D-04 minh
.50D0 maxh

ON P OO R, P, OON

As you can see, when a vector is required in the input (as is the case for the starting
point, upper bounds, and lower bounds), each component of the vector is listed on
a separate line.

The names of the configuration files are all numbers. Table 3.4 describes the
mapping from problem name to file name.

3.4, Using IFFCO the Fast and Easy Way 13

Table 3.4. Test problem configuration file names
Test Problem Name File Name

Constant 10
Linear 11
Quadratic 12
Branin 13
Shekel-5 14
Shekel-7 15
Shekel-10 16
Hartman-3 17
Hartman-6 18
Goldprice 19
Sixhump 20
Shubert 21

3.4 Using IFFCO the Fast and Easy Way

This section describes how to apply IFFCO to your own objective function in the
most straightforward manner possible: using the serial version and the default
parameters. This section is meant as a sort of “quick start” guide. Chapter 4 gives
more detail on the topics covered briefly here.

We have included some source code files to serve as a template for using
IFFCO. src/sample func.f contains a sample function evaluation subroutine.
src/ser_sample main.f and src/par_sample main.f are driver programs for the
serial and parallel versions, respectively, which call IFFCO and report its results.
We will now explain how to modify these files for your own purposes. Only the
serial version is discussed here. The process for the parallel version is similar, but
uses src/par_samplemain.f instead of src/ser_sample main.f.

The first step is packaging your objective function in a way that IFFCO can
use. This means a Fortran 77 subroutine with a particular calling sequence. The
calling sequence IFFCO expects is:

func(n, x, f, flag, idata, ilen, ddata, dlen, cdata, clen)

where n is the problem dimension, x is the point to evaluate the function at, and £
is the parameter for returning the value of the objective function at x. The other
parameters will be explained later. The last six parameters to the function call are
for passing data other than the problem dimension and the point to evaluate. These
will not be necessary for most users and are not discussed here; they are covered in
Section 4.1.14.

src/sample func.f contains the skeleton of an IFFCO-ready objective func-
tion. You may either place your objective function code directly in this file, or have
this subroutine call another subroutine which evaluates you objective function. Note
that if you call an external subroutine, you must also modify the makefile to compile

14 Chapter 3. Getting Started with IFFCO

and link in the external source code.

Before returning, your function evaluation subroutine should set £ to the value
of the objective function at x. It should also set flag to 0 if the function evaluated
normally or 1 if the function failed to evaluate. IFFCO uses this parameter to detect
hidden constraints.

Here is an example of an objective function subroutine for use with IFFCO:

subroutine myfunc(n, x, f, flag, idata, ilen, ddata, dlen,
+ cdata, clen)

implicit none

C Parameters
integer n, flag, ilen, dlen, clen
double precision x(n), f
integer idata(ilen)
double precision ddata(dlen)
character cdata(clen)

C A convex quadratic with low-amplitude, high-frequency noise:
f=x(D*x(1) + x(2)*x(2) + (.1)*sin(15%3.14159*x (1) *x(2))

C Since this function will always return a value, flag is always O.
flag = 0
end

Once the code for your objective function is prepared, you need to write a
program to call IFFCO. src/ser_samplemain.f provides an example of such a
driver program.

The driver program first defines variables for each of IFFCQ’s parameters.
One of these is the dimension of the problem:
parameter (dim = 2)

Make sure dim is the same as the dimension of your objective function.

Next, the driver program sets each IFFCO parameter. Eventually you will
probably want to tune the IFFCO parameters for your problem (see Section 4.1
for help with that), but the parameters used in src/ser_sample main.f, which are
IFFCO’s defaults, should work passably well in many cases. There is one change
you will have to make, however. Locate the section of code which sets the vectors
u and 1, which looks like this:

do 10 i = 1,dim
u(i) 1.0
1(i) = 0.0
10 continue

These are the upper and lower bounds in each coordinate direction of the hyper-box
IFFCO searches for a minimum. You should set these to something reasonable for
your problem.

3.4, Using IFFCO the Fast and Easy Way 15

After setting up the parameter values, the driver program calls IFFCO. Once
IFFCO returns, the driver program prints out the minimum IFFCO found. The
code for calling IFFCO and reporting the result looks like this:

C Start IFFCO
call iffco(myfunc,x,u,l,fscale,minh,maxh,dim,maxit,

+ restart,writ,termtol, f,maxcuts,option,

+ idata, ilen, ddata, dlen, cdata, clen)
C Print brief results of the run.

write(6,*) ’IFFCO found this minimum:’

write(6,x) °f = >, f

do 20 i = 1,n

write(6,*) x(C’, i, ?) = 7, x(i)

20 continue
write(6,*) ’IFFCO used ’, nevalsIF, ’ function evaluations.’

You should not need to modify any of this code.
Now that the objective function and driver program are set up, you can com-
pile your program by typing:
> make ser_sample
from the iffco/ directory. To run the program, type:
> ser_sample

16

Chapter 3. Getting Started with IFFCO

Chapter 4

General Use of IFFCO

The previous chapter briefly described the use of IFFCO in the simplest case. This
chapter will take a more general approach. Each parameter in IFFCO’s calling
sequence is described, as well as IFFCQ’s return values and output. Most of the
information in this section applies to both the serial and parallel versions of IFFCO.
Chapter 5 covers issues specific to the parallel version.

4.1 Calling Sequence
The calling sequence for IFFCO is

iffco(func, x, u, 1, fscale, minh, maxh, n, maxit,
+ restart, writ, termtol, f, maxcuts, option,
+ idata, ilen, ddata, dlen, cdata, clen)

The following sections describe each of these parameters in depth and give sugges-
tions for choosing appropriate values.

4.1.1 Objective function func

func is a user-supplied Fortran subroutine for evaluating the objective function,

A~

f(z). IFFCO calls your subroutine like this:
call func(n, x, f, flag, idata, ilen, ddata, dlen, cdata, clen)

Therefore, you should force your subroutine to have the calling sequence above by
either rewriting your code or writing a wrapper subroutine that calls the actual
function evaluation subroutine. (Alternatively, you may change the call to func
in IFFCO, which is located in the subroutine funcIF. However, this is not rec-
ommended.) You should also ensure func sets the two return values correctly, as
explained below. .

In the calling sequence above, n is the dimension of the domain of f, x is the
point to evaluate f at, £ is a return value for f(z), and £lag is another return value.

17

18 Chapter 4. General Use of IFFCO

The six remaining parameters are for passing extra data to the function evaluation
code. This way, if your function requires input other than n and x, it can receive
that input and still conform to IFFCO’s calling pattern. See Section 4.1.14 for
details on using these parameters. Table 4.1 summarizes the types and meanings
of each of the parameters to func.

Table 4.1. func parameters

Name Type Meaning
n integer Dimension of problem
be double precision vector, Point
length n
f double precision Return value: f(z)
flag integer Return value: feasibility flag
idata integer vector, Extra integer data
length ilen
ilen integer Length of idata

ddata double precision vector, Extra double precision data
length dlen

dlen integer Length of ddata

cdata character vector, Extra character data
length clen

clen integer Length of cdata

The second return value, flag, tells IFFCO whether or not the value returned
in £ is a legitimate function value. Normally, func should set flag to 0. flag
should be set to 1 if the objective function did not evaluate normally or is not
defined at x. This could happen, for instance, if the objective function is a model of
some physical process and x indicates some combination of input parameters that
is physically impossible. A point x for which f(z) has no value is called infeasible.
If an objective function has one or more regions of infeasible points, it is said to
have hidden constraints, constraints that can only be discovered by attempting to
evaluate the objective function. flag helps IFFCO detect and deal with hidden
constraints.

If x is infeasible (i.e. flag = 1), IFFCO will do one of two things. If in the line
search, IFFCO will use f(z) =fscale. Since fscale is expected to be greater than

or equal to mazzeQ <| f (:1:)|), the line search should never accept such a function
value. If in the difference gradient evaluation, IFFCO will use

~

f@)=f"+elf] (4.1)

where .
f*=maz [f(zc)|z.is feasible and on the stencil] (4.2)

and € = 10~°. This guarantees that the search direction IFFCO uses will be away
from the infeasible region, but not overwhelmingly so.

4.1. Calling Sequence 19

4.1.2 |Initial iterate x

The initial iterate, x, is a double precision vector of length n. If option(3) is set to
0, IFFCO will use x as the starting point to search for a minimum. If option(3) is
set to 1, IFFCO will ignore x and use the center of the search region as the starting
point.

Before IFFCO returns, it sets x to the location of the minimum found.

4.1.3 Boundsu, 1

Together, u and 1 define the hyper-box @), which is the part of the domain of f
where IFFCO searches for a minimum — the search region. Both u and 1 are double
precision vectors of length n. u contains the upper bounds of @ for each coordinate
direction; 1 contains the lower bounds. @ should fit as tightly around the region of
the minimum as possible; this will reduce the number of scales IFFCO has to run
through to find a solution.

Internally, IFFCO maps () to the unit hyper-cube (i.e. [0,1]"). IFFCO per-
forms all calculations on points within the unit hyper-cube. The final solution is
mapped back to the original hyper-box before being returned to the user.

4.1.4 Function scaling fscale

fscale is a double precision scalar used to scale the function. fscale should be
an approximation to the maximum magnitude the objective function obtains in the
search region. The default value for fscaleis 1. If fscale is set to zero, the default
is used. .

Unfortunately, mazzecq (| f (x)|) is not usually known. Hence, users may have

to experiment with values of fscale to determine a value appropriate for their
problem. Choosing fscale too large often causes IFFCO to find answers that are
unacceptable to the user while reporting convergence at many scales without taking
a step at these scales. If fscale is too small, the gradients calculated may become
too large. Choosing fscale too small often results in the line search being unable
to find a suitable new point for many point-scale pairs. For more details concerning
problems with fscale see Chapter 6.

4.1.5 Difference increment limits minh, maxh

minh is a double precision scalar. It is a lower bound for the last and smallest finite
difference step (scale) IFFCO uses to calculate the finite difference gradient. When
the scale shrinks below minh, the algorithm either terminates or restarts. minh must
be no greater than maxh.

maxh is a double precision scalar. It is the first and largest scale IFFCO uses
to calculate the finite difference gradient. maxh must be no greater than 0.5. If
minh = maxh, IFFCO will use exactly one scale — maxh.

minh and maxh are scaled finite difference steps. That is, if maxh = 0.5, then
the first difference step IFFCO uses will be 0.5(u(i) — I(i)) for each dimension 1.

20 Chapter 4. General Use of IFFCO

The default value of maxh is 0.5, and this is a good starting point for most
problems. Determining a suitable value for minh is more complicated problem.
Recall that IFFCO was designed to minimize functions of the form:

f(@) = f(@) + ¢(2) (4.3)

where f(z) is a smooth function with a simple form and ¢(z) is a low-amplitude
high-frequency perturbation (noise). Choosing minh involves the curvature of f(z),
the amplitude of ¢(z), the amount of accuracy needed by the user, and the cost per
function evaluation.

If minh is too large, IFFCO may not obtain an acceptable answer. However, if
minh is too small, some of the scales used may be so small that gradients calculated
using them are dominated by changes in ¢(z). Choosing minh too small often
manifests itself by the line search being unable to find a suitable new point for some
of the smaller scales

If the amplitude of ¢(z) is approximately constant, then optimally minh should
be a low estimate of O(max,cq(|¢(x)/ fscale|'/?) (where Q is the search region).
If ¢(z) decays near minima of f(z), minh may be smaller. For instance, if it is
known that f(z) is smooth near minima of f(z), minh may be on the order of the
cube root of machine epsilon. Unfortunately, the behavior of ¢(x) is usually not
well known, so users may have to experiment with minh to find a suitable value for
their problems.

4.1.6 Function dimension n

n is the dimension of the domain of the objective function or, put another way, the
number of independent variables in the objective function. If n is greater than 24,
the user will have to change the value of the parameter mx in IFFCQO’s source code
(see Section 4.2).

4.1.7 lteration limits maxit

maxit is an integer vector of length two.

maxit (1) specifies the maximum number of iterations IFFCO is allowed to
take at a given scale. The default value is 100, which will be used if maxit(1) is
set to 0.

maxit(2) is a soft limit on the number of function evaluations IFFCO is
allowed to use over the course of the entire algorithm. The default is 100n2, which
will be used if maxit(2) is set to 0. IFFCO will not stop immediately if it exceeds
maxit(2) in the middle of an iteration. Rather, it will finish the current iteration
and then stop. This means that the actual number of function evaluations used will
sometimes exceed maxit (2).

4.1.8 Number of restarts restart

restart is an integer specifying the number of restarts to perform.

4.1. Calling Sequence 21

Restarts should be done only if IFFCO is returning answers that are not as
low as the user expects. Restarts are done to help ensure that the final answer
obtained is a minimum at all scales.

The default is not to do restarts.

4.1.9 Level of output writ

writ is an integer scalar that controls the type and amount of output IFFCO
generates. IFFCO writes most of its output to the file iffco.out. IFFCO can also
mirror the same output to standard output (usually the screen). For file output
only, writ can range from 0 to 4, with writ=0 indicating no output and higher
values indicating more output. Adding 10 to writ (i.e. writ = 10 to 14) causes
the same output to be copied to standard output (usually the screen).

The levels of output are described briefly in Table 4.2. For more on what the
levels of output mean, see Section 4.4.1.

The value of writ has no effect on IFFCQ’s other output file, points.out.

Table 4.2. Settings of writ and corresponding level of output

writ Type of Output

0,10 No output

1,11 Standard information (scaled) for each iteration

2,12 Standard information plus current iterate (scaled)

and number of function evaluations used so far

3,13 Standard information (unscaled)

14 Standard information plus current iterate (unscaled)
and number of function evaluations used so far

4.1.10 Termination criterion at a scale termtol

termtol is a double precision scalar used for determining convergence of the algo-
rithm at a given point for a given scale. The default value of termtol is 1.0 and
will be used if termtol is set to 0.

The algorithm is considered to have converged at a point z when

|z — P(z — d(z))|| < h - termtol (4.4)

where P(z — d(z)) is the projection of the steepest descent step onto the search
region and h is the current difference increment, or scale. When the algorithm
converges at one scale, the scale is reduced by a factor of two.

The appropriate value for termtol is problem-dependent. In many computa-
tions, using the default value for termtol has worked well. However, this is not the
case for all problems. If termtol is too large, the algorithm will report convergence
at many scales without finding a new point at these scales, and return an unac-
ceptable answer. If termtol is too small, the algorithm may not reduce scales fast

22 Chapter 4. General Use of IFFCO

enough. In this case the line search will be unable to find acceptable new points for
many scales, thus costing the user many unnecessary function evaluations.

4.1.11 Minimum function value f
f is a double precision variable used for returning the minimum value of the objective

function IFFCO finds. IFFCO ignores the initial value of f.

4.1.12 Line search limit maxcuts

maxcuts is an integer that specifies the maximum number of cutbacks IFFCO may
use in the line search. The default value for maxcuts is 3 and it will be used if
maxcuts is set to 0.

4.1.13 Options option

option is an integer vector of length seven. Its components control different aspects
of how IFFCO works.

option(1) determines the type of quasi-Newton update IFFCO uses. If
option(1) is set to

e 0, no quasi-Newton step is performed.
e 1, the SR1 update is used.
e 2, the BFGS update is used.

The default is option(3)=1.

option(2) determines how IFFCO uses the location of the current minimum
at each stage. As IFFCO progresses, it keeps track of the lowest function value it
has seen (in the line search or gradient calculation) and the location of that value,
ZTm (2, will not always be one of the iterates). If option(2) is set to

e 0, z,, is not used.

e 1 or greater, z,, is taken as the current point at a restart.

e 2 or greater, x,, is taken as the current point at each new scale.
e 3 x,, is taken as the current point after each line search.

The default is option(2)=2.
option(3) determines how IFFCO uses the initial iterate, x. If option(3) is

e 0, IFFCO uses x as the initial iterate.

e 1, IFFCO ignores x and uses the center of the search region as the initial
iterate.

4.2. Other Parameters 23

The default is option(3)=1.

option(4) determines when IFFCO re-initializes the quasi-Newton matrix,
which is the approximate inverse Hessian (if BFGS is being used) or the approximate
Hessian (if SR1 is being used). The quasi-Newton matrix, B, is initialized to the
identity matrix, I. If option(4) is

e 0, B is re-initialized at each new scale.
e 1, B is re-initialized whenever the active set changes.
e 2, B is re-initialized only if positivity is lost.

The default is option(4)=1.

option(5) and option(6) set the location of IFFCO’s main output file. If
option(5)=0, IFFCO creates iffco.out in the working directory and uses it for
output. If option(5)=1, option(6) should be the unit number of an open output
file. IFFCO will use that file for output. The default is option(5)=0.

option(7) is used only in the parallel version. If option(7)=0, the master
processor is used for function evaluations in the difference gradient calculation; if
option(7)=1, it is not. This option can help with load balancing; see Section 5.1
for more information. The default is option(7)=0.

4.1.14 Extra data for the function evaluation

The last six parameters to IFFCO allow you to pass extra data to your objective
function subroutine, func. Three vectors are provided for doing this: idata for
integers, ddata for double precision data, and cdata for characters. The other
three parameters, ilen, dlen, and clen give the sizes of idata, ddata, and cdata,
respectively.

Every time IFFCO evaluates the objective function, it passes these six param-
eters to func. They can be used when a function requires input other than n and
the point to evaluate. If no extra data is needed, leave the vectors empty and set
their sizes to 0.

IFFCO does not modify any of these vectors or their sizes. However, you may
modify them in func. If this happens in the serial version, the modified data will
be passed to func the next time it is called. This may be a useful feature in some
cases. In the parallel version, however, we do not recommend you modify the “extra
data” parameters. Since each processor maintains its own copy of the vectors and
their sizes, changes on one processor would be propagated to subsequent function
evaluations only on that processor, not on the others. This may cause unwanted
results.

4.2 Other Parameters

Besides the parameters in IFFCQO’s calling sequence, there are a few other variables
in the IFFCO source code that may have to be changed in rare cases. Most of these
specify the sizes of temporary arrays. Because Fortran does not allow dynamic

24 Chapter 4. General Use of IFFCO

sizing of local arrays, the sizes of some arrays must be specified in advance. This is
done in Fortran parameter statements, which have the form

(parameter varname = m)

where m is a constant expression containing no variables.

Some array sizes depend on the problem dimension, n. IFFCO uses mx in place
of n when calculating these array sizes. By default, mx is 24. If your problem dimen-
sion is greater than 24, you will have to edit the IFFCO source code file and change
the value of mx in the following subroutines: iffco, initIF, statsIF, funcIF,
ser_gradIF, par_gradIF, minIF, maxIF, ser_linesearchIF, par_linesearchIF,
evaltolIF, quasiIF, stepIF, restartIF, takeminIF, pointsIF, mastersendIF,
and slaverecvIF. .

The array fhist stores the value of f(z.) for every iteration. The size of
fhist is given by mx2, which is 1000 by default. If you expect more iterations, you
should change mx2 where it is defined in the main subroutine, iffco.

The last of these array sizes is used only in the parallel version. maxprocs
is the maximum number of processors available to IFFCO. Since IFFCO can use
at most max(2*n, maxcuts)+1 processors at once, maxprocs is set to 2*mx+1 by
default. This should be enough unless you allow more than 2*mx+1 cutbacks in
the line search. In that case, you need to change the value of maxprocs in the
subroutines iffco, par_gradIF, and par_linesearchIF.

The final variable you may have to adjust in the IFFCO source code is the
global variable mepsIF. mepsIF is meant to be an approximation to machine epsilon.
It is used, for instance, as the tolerance for comparing two floating point numbers.
That is, a = b if and only if |a — b| < mepsIF. By default, mepsIF=10"12. mepsIF
is set in the main subroutine, iffco.

4.3 Return Values

IFFCO returns two pieces of data through the calling sequence. In addition, you

can garner more information by accessing the global variables IFFCO declares.
The location of the minimum found, z*, and the value of the objective function

there, f(z*), are returned through the calling sequence in x and £, respectively.
IFFCO also defines several global variables that might be interesting. To

access them, you need to make the following variable declarations in the program

you use for calling IFFCO:

integer nevalsIF

double precision fminIF, xminIF(mx), fmaxIF

common /globallF/nevalsIF

common /globallF2/fminIF, xminIF, fmaxIF

nevalsIF is the number of function evaluations IFFCO used to find a minimum.

fminIF is the smallest objective function value IFFCO saw at any point — in the

line search or the difference gradient computation — and xminIF is the point z,

where f(2,,) =fminIF. (The value of mx in the declaration of xminIF should be the

same as the value of mx used in IFFCO.) fminIF may not be the same as f, the

minimum function value IFFCO returns. This is because depending on the value of

4.4. Output 25

option(2), z,, may never be adopted as the current iterate, even if f(zn,) < f(z.)
(where z¢ is the current iterate). fmaxIF is the greatest objective function value
IFFCO encountered.

4.4 OQutput

IFFCO generates two output files, iffco.out and points.out. These files are both
placed in the calling program’s working directory. iffco.out traces the progress
of the algorithm and contains various error messages. The amount of information
output to this file can be controlled by one of the parameters to IFFCO, writ.
The information in iffco.out can also be mirrored to standard output or put in
a different file. points.out reports the function value and coordinates of every
objective function evaluation IFFCO performs.

44,1 iffco.out

IFFCOQO’s main output file is iffco.out. The output in iffco.out is divided into
three sections: parameter reporting, algorithm progress, and function value history.
The amount and type of output in iffco.out are controlled by one of the
parameters to IFFCO, writ. If writ is 0, no output is produced except for messages
reporting errors that cause IFFCO to exit. Setting writ to 1, 2, 3, or 4 determines
the type of information given in the algorithm progress section and has no effect on
the other two sections. Adding 10 to the value of writ (i.e. writ = 10, 11, 12, 13,
or 14) causes whatever is written to iffco.out to be written to standard output.

In some cases you may want to send the output that normally goes to iffco.out
to another file. You can do this by setting option(5) to 1 and putting the unit
number of the file to use for output in option(6). The unit number specified in
option(6) must be a valid unit number to a file that is already open.

The first section of iffco.out, the parameter reporting section, reports the
values of all parameters passed to IFFCO (except for idata, ddata, and cdata,
which may be very long vectors). Next, it reports how many processors IFFCO is
running on. Finally, it reports the number of invalid parameters detected. IFFCO
checks to see if the parameters it is given meet the expected conditions. For instance,
u(i) must be less than 1(i). If IFFCO finds any invalid parameters, it will output
a brief message describing the problem(s) and quit. These error messages are always
sent to standard output, even if writ is less than 10. As long as writ is not equal
to 0 (in which case iffco.out is never opened), these messages are written to
iffco.out as well.

The output in the parameter reporting section looks like this:

fscale = 1.0000000000000
minh = 2.4414062500000D-04
maxh = 0.50000000000000

n = 2

maxit (1) = 3

maxit (2) = 5000

26 Chapter 4. General Use of IFFCO

restart = 0
writ = 14
termtol = 0000000000000D-04
ncuts =
x(1) =
x(2) =
u(1) =

1.
5
0.6000000000E+01
0.5000000000E+01
0.1000000000E+02
u(2) = 0.1000000000E+02
1¢C 1D = 0.0000000000E+00
1C 2) = 0.0000000000E+00
option(1)= 1
option(2)= 3
option(3)= 1
option(4)= 1
option(5)= 0
option(6)= 0
option(7)= 0
running IFFCO on 1 processors

The next section of output in iffco.out is the main one, the algorithm
progress section. As IFFCO progresses, it periodically outputs information about
what it is doing. For writ = 1, 2, 3, or 4, IFFCO prints out an update every time
the line search is successful or the scale is reduced. The most basic information,
called the “standard information” has this format:

m [1x]1 f gl h cuts

0 0.5000E+00 -.5754E+00 0.3145E-01 0.5000E+00 Stencil Failure
0 0.5000E+00 -.5754E+00 0.9690E-01 0.2500E+00 Stencil Failure
0 0.5000E+00 -.5754E+00 0.1503E+00 0.1250E+00 Stencil Failure
1 0.4800E+00 -.6199E+00 0.1247E+01 0.6250E-01 1

The first column, labelled m, is the iteration number for the given scale. This is
equivalent to the number of successful line searches conducted so far at this scale.
The second column, | |x| |, is the Euclidean or Ly norm of the scaled current iterate,
z., divided by y/n. The £ column is the value of the objective function at the current
iterate. This is the scaled value if writ is 1 or 2 and the unscaled value if writ is
3 or 4. The third column, ||gl |, is the Ly norm of the scaled difference gradient
at z. divided by +/n. The h column is the current scale (difference increment).

If the line search was successful then the last column, labelled cuts, gives the
number of cuts the line search used to find an acceptable point. If the line search
failed or the scale is going to be reduced for some other reason, the last column gives

4.4. Output 27

the reason for reducing the scale. Table 4.3 lists messages that might be printed in
this column and elaborates on their meanings.

Table 4.3. Explanation of scale reduction messages

Message Explanation
Line search failure Line search could not find an acceptable point using
maxcuts or fewer cutbacks.

Convergence The algorithm has converged for this scale.
Maxit(1) exceeded The maximum iterations on a given scale have been
exceeded.

Maxit(2) exceeded The function evaluation budget for the entire
algorithm has been exceeded.

If writ is 2 or 4, IFFCO will output the current iterate, z., and the number
of function evaluations used so far below the standard information. In that case,
the output looks like this:

m [1x]1 f gl h cuts
0 0.5000E+00 -.5754E+00 0.3145E-01 0.5000E+00 Stencil Failure
x(1) = 0.5000000000E+00
x(2) = 0.5000000000E+00
x(3) = 0.5000000000E+00
x(4 = 0.5000000000E+00
Total function evaluations: 9
m x| f llgll h cuts
0 0.5000E+00 -.5754E+00 0.9690E-01 0.2500E+00 Stencil Failure
x(1) = 0.5000000000E+00
x(2) = 0.5000000000E+00
x(3) = 0.5000000000E+00
x(4) = 0.5000000000E+00
Total function evaluations: 17

If writ is 2, the scaled coordinates of . will be output. If writ is 4, the unscaled
coordinates will be used.

Besides these progress updates, various non-critical but important notifica-
tions may also appear in the algorithm progress section of iffco.out. The mes-
sages that may appear are:
function failed to evaluate! Setting f := fscale.

The objective function routine set flag to 1 to indicate an error in
evaluation (see Section 4.1.1).

28 Chapter 4. General Use of IFFCO

Minimum Taken: f = function value

The current iterate has been set to the location of the smallest known
function value (see discussion of option(2) in Section 4.1.13). If writ
is 2 or 4, this message will be followed by the unscaled coordinates of
the new current iterate.

B not positive definite

The quasi-Newton matrix is no longer positive definite. B will be re-
initialized to the identity, I.

After the algorithm is finished, IFFCO outputs the function value history.
This consists of the unscaled objective function value at every iteration during the
algorithm, starting with the value at the initial iterate and proceeding to the final
minimum value IFFCO discovered. This output looks like the following:

f history (unscaled)
-0.57535140943302
-0.57535140943302
-0.57535140943302

4.4.2 points.out

points.out lists the unscaled objective function value, f(z), and the n unscaled
components of z for each function evaluation IFFCO performed. The function
values are listed one per line. Here is a sample of some output from a points.out
file:

1 19.875836249802 0. 0.
2 1.1517529438694 -10.0000000000000 O.
3 14.9056882611065 10.0000000000000 O.

The first column is the evaluation number and the second is the function value.
The last n are the components of x.

Chapter 5

Parallel Operation of
IFFCO

There are two parallel versions of IFFCO, one using PVM (Parallel Virtual Machine)
calls and another using MPI (Message Passing Interface) calls. These are referred to
collectively as “parallel IFFCO.” Parallel IFFCO can use at most max(mazcuts, 2n+
1) processors, where n is the number of variables in the objective function and
maxcuts is the maximum number of cutbacks allowed in the line search. The call-
ing sequence for parallel IFFCO is exactly the same as for serial IFFCO, and almost
all parameters have the same interpretation. The only exception is option; parallel
IFFCO uses option(7), which is ignored by serial IFFCO (see Section 4.1.13). The
return values and output files of parallel and serial IFFCO are also identical.

The code calling parallel IFFCO is responsible for setting up and terminating
the parallel communication environment. In the PVM case this means all processors
must join the group iffcogroup before calling IFFCO and then call pvmfbarrier
and pvmfexit when IFFCO finishes. In the MPI case, all calling processors must
call mpi_init before calling IFFCO and call mpi_barrier followed by mpi finalize
when IFFCO finishes. The parallel IFFCO source code files contain the subroutines
comminitIF and commexitIF for performing these initialization and finalization
tasks. To use these subroutines, declare them external in the program that calls
IFFCO:

external comminitIF, commexitIF
and then call comminitIF before IFFCO and commexitIF after IFFCO:

call comminitIF()
call iffco(. . .)
call commexitIF()

Parallel IFFCO uses a master-slave paradigm. All the processors in the virtual
machine must call IFFCO with the same parameters. Once IFFCO starts, the
processor with the lowest task id (in the PVM case) or rank 0 (in the MPI case)
becomes the master processor and all other processors are slaves. The master
processor manages the algorithm, which is the same as in serial IFFCO except for the

29

30 Chapter 5. Parallel Operation of IFFCO

difference gradient calculation and the line search. In those two subroutines, parallel
IFFCO takes advantage of the natural parallelism and performs most of the function
evaluations needed in parallel on the slave processors. The master processor makes
decisions about how to continue the algorithm based on those function evaluations.
The parallel implementation of the difference gradient computation and line search
are explained in more detail in the following two sections.

5.1 Parallel Difference Gradient Computation

The parallel IFFCO source code files (pvm_iffco.f and mpi_iffco.f) contain a
subroutine called par_gradIF for calculating the difference gradient in parallel. To
calculate a difference gradient, IFFCO requires at most 2n function values, where
n is the number of variables in the objective function. The required function eval-
uations can all be conducted in parallel.

Since there will not always be 2n processors available, the master processor
first calculates every point in the domain where the objective function must be
evaluated. Then the master sends maz(2n,p — 1) points to the slave processors,
where p is the number of processors available, including the master processor. The
master processor evaluates the next point, assuming there are points still to be
evaluated.

When the master finishes its function evaluation, it waits until a slave proces-
sor returns a value. If there are more points to be evaluated, the master gives that
slave another point to evaluate. Giving a processor the next function evaluation
to do as soon as it finishes one, instead of waiting for all the slave processors to
finish and then sending out p — 1 function evaluations at the same time, insures
that the slaves will be busy as often as possible. After sending out the new point,
the master checks to see if the number of function values it has so far is a multiple
of p. If so, and if there are points still to be evaluated, the master does another
function evaluation. Otherwise, the master continues to wait for results from the
slaves. This process continues until the master has all necessary function values.

In some extreme cases, using the master processor to do function evaluations
in par_gradIF may lead to load balancing problems. We have attempted to ap-
proximately balance the work done by each processor by having the master do one
function evaluation for every p — 1 function evaluations done by the p — 1 slaves.
This scheme should be adequate as long as the amount of time required for each
function evaluation is approximately constant. If some processors are slower than
others or if the input to the objective function greatly affects the amount of time
required to evaluate the function, some function evaluations may take much longer
than others. In this case, the slave processors could sit idle while waiting for the
master to finish a very time-consuming function evaluation. To avoid this, you can
set option(7) to 1 to prevent IFFCO from using the master processor for function
evaluations in par_gradIF. IFFCO will still use the master processor for function
evaluations in the line search.

If option(7) is O (i.e. the master processor is used for function evaluations),
parallel IFFCO can use up to 2n processors in the difference gradient computation.

5.2. Parallel Line Search 31

If option(7) is 1, parallel IFFCO can use up to 2n + 1 processors — 2n slaves for
function evaluations plus the master processor to manage the algorithm.

5.2 Parallel Line Search

The parallel IFFCO source code files (pvm_iffco.f and mpi_iffco.f) contain a
subroutine called par_linesearchIF for performing a line search in parallel. The
parallel line search works identically to the serial line search, with two exceptions:

1. function evaluations are done p at a time, where p is the number of processors,
and

2. the parallel line search does not use quadratic or cubic models to improve the
line search.

In the parallel line search, the master processor determines all trial points
that may be evaluated in the line search (there are up to maxzcuts of these, where
mazxcuts is the maximum number of cutbacks allowed). It then sends the first p—1
function evaluations to the slaves and does one function evaluation itself. When
all these have completed, the master processor determines if the sufficient decrease
condition has been met. If it has, the line search terminates. If it has not, p more
function evaluations are carried out. This process continues until sufficient decrease
is met or maxcuts cutbacks are taken.

par_linesearchIF does not attempt to load balance by sending each slave
a new job as soon as the old one is finished as par_gradIF does. This is because
par_linesearchIF cannot determine whether or not more cutbacks will be neces-
sary until it receives results from all p function evaluations. Blindly doing extra
cutbacks may result in wasted function evaluations (and time). For the same rea-
son, there is no option not to use the master processor for function evaluations in
the line search.

Quadratic and cubic models are not used in the parallel line search because this
technique involves using function values from previous steps to determine the next
point to evaluate. par_linesearchIF performs p function evaluations at a time,
so it has no previous function values to base a model on. A possible alteration to
par_linesearchIF might be to use the p function values determined in the first
set of evaluations to create a model of the objective function in the line search
direction. Then the location of the next batch of cutbacks could be determined
using this model.

Although the parallel line search may take the same number of cutbacks as the
serial version (if quadratic and cubic models were not used in the serial line search,
it always would), it could still do more function evaluations. Suppose a line search
requires three cutbacks. Since the serial version completes each function evaluation
before deciding whether or not to do the next cutback, serial IFFCO requires three
function evaluations to perform this line search. Suppose parallel IFFCO is run on
five processors, with mazcuts = 5. Since parallel IFFCO does not know in advance
how many cutbacks will be needed in the line search, it does as many function
evaluations as processors — five. When all five have completed, par_linesearchIF

32 Chapter 5. Parallel Operation of IFFCO

determines that the third trial point is the first to meet sufficient decrease, and
accepts that point. This is recorded as three cutbacks and five function evaluations.
Because the extra function evaluations are done in parallel, this does not necessarily
make the parallel line search slower than the serial version.

Chapter 6

Trouble Shooting

This chapter discusses problems you may encounter while running IFFCO and gives
advice on fixing them. In diagnosing problems with IFFCO, the output written to
iffco.out when writ is greater than or equal to 1 (see Section 4.4) will be useful.
The output examples in this chapter were generated using writ = 1.

6.1 Input Errors

The first thing IFFCO does when it is called is check that all the parameters have
valid values. If IFFCO finds invalid parameter settings, it will terminate before it
begins searching for a minimum. When these errors occur, IFFCO prints a message
to iffco.out (if writ is not 0) and to standard output (regardless of writ’s value).
After checking all its parameters for errors, IFFCO prints a message indicating the
number of errors it found and exits. You should correct the problem(s) specified
and try running IFFCO again.

This is an example of the type of output IFFCO generates when there are
errors in the input (the number and type of errors may vary):

u(1) is less than 1(1)
x(1) is out of bounds
fscale negative

6.2 Line Search Failure

This section discusses what to do if the line search is not able to find a new point
at many scales. Failure in the line search is indicated by the warning “Line search

33

34 Chapter 6. Trouble Shooting

failure” in the output from IFFCO.

6.2.1 Line search failures and poor results

If IFFCO is returning answers that are not as good as the you expect and IFFCO
is reporting failure in the line search at many scales then fscale may be too small.
Here is an example of output from IFFCO when fscale is too small for the problem:

m [x || f [l g Il h cuts

0 0.1000D+01 0.8495D+04 0.1134D+05 0.5000D+00 10

1 0.2357D-01 0.8443D+04 0.1133D+05 0.5000D+00 Convergence

0 0.2357D-01 0.8443D+04 0.1700D+05 0.2500D+00 Line search failure

0 0.2357D-01 0.8443D+04 0.1983D+05 0.1250D+00 Line search failure

0 0.2357D-01 0.8443D+04 0.2125D+05 0.6250D-01 Line search failure
Number of function evaluations: 58

Using larger values for £scale usually solves this problem. You may have to exper-
iment to find a good value for fscale.

6.2.2 Line search failures and reasonable results

If IFFCO is returning acceptable answers but is reporting failure in the line search
at many scales, then termtol may be too small. Here is an example of output from
IFFCO when termtol is too small for the problem:

m || x| f g Il h cuts

0 0.1000D+01 0.8495D+01 0.1134D+02 0.5000D+00 1

1 0.3571D+00 0.8009D+01 0.1134D+02 0.5000D+00 0

2 0.7308D+00 0.7882D+00 0.5182D+01 0.5000D+00 Line search failure
0 0.7308D+00 0.7882D+00 0.6157D+01 0.2500D+00 5

1 0.6685D+00 0.1758D+00 0.5112D+00 0.2500D+00 1

2 0.5145D+00 -.3437D-02 0.7545D-01 0.2500D+00 1

3 0.4967D+00 -.9604D-02 0.2065D-01 0.2500D+00 Line search failure
0 0.4967D+00 -.9604D-02 0.2067D-01 0.1250D+00 Line search failure
0 0.4967D+00 -.9604D-02 0.2067D-01 0.6250D-01 Line search failure

Number of function evaluations: 58

6.3 Line search failure at small scales

If IFFCO is returning acceptable answers but is reporting failure in the line search
for many of the smaller scales, then minh may be too small. Here is an example of
output from IFFCO when minh is too small for the problem:

m |l x|l f Il g |l h cuts

6.4. Poor Answers 35

0 0.1000D+01 0.8508D+01 0.1134D+02 0.5000D+00 1

1 0.3477D+00 0.8008D+01 0.1133D+02 0.5000D+00 Convergence

0 0.3477D+00 0.8008D+01 0.1697D+02 0.2500D+00 4

1 0.7884D+00 0.7990D+01 0.1697D+02 0.2500D+00 0

2 0.5091D+00 -.9306D-02 0.5221D-01 0.2500D+00 Convergence

0 0.5091D+00 -.9306D-02 0.5615D-01 0.1250D+00 Convergence

0 0.5091D+00 -.9306D-02 0.5754D-01 0.6250D-01 Convergence

0 0.5091D+00 -.9306D-02 0.5792D-01 0.3125D-01 Convergence

0 0.5091D+00 -.9306D-02 0.5802D-01 0.1562D-01 1

1 0.5011D+00 -.9794D-02 0.2134D-01 0.1563D-01 Convergence

0 0.5011D+00 -.9794D-02 0.8965D-02 0.7813D-02 Convergence

0 0.5011D+00 -.9794D-02 0.3496D+00 0.3906D-02 3

1 0.5027D+00 -.9869D-02 0.2015D+00 0.3906D-02 2

2 0.5027D+00 -.9939D-02 0.2809D-02 0.3906D-02 Convergence

0 0.5027D+00 -.9939D-02 0.4012D-01 0.1953D-02 Line search failure
0 0.5027D+00 -.9939D-02 0.5027D-01 0.9766D-03 Line search failure
0 0.5027D+00 -.9939D-02 0.1020D+00 0.4883D-03 5

1 0.5027D+00 -.9939D-02 0.6640D-01 0.4883D-03 2

2 0.5028D+00 -.9939D-02 0.6526D-01 0.4883D-03 Line search failure
0 0.5028D+00 -.9939D-02 0.7184D-01 0.2441D-03 Line search failure
0 0.5028D+00 -.9939D-02 0.7356D-01 0.1221D-03 5

1 0.5028D+00 -.9940D-02 0.6012D-03 0.1221D-03 2

2 0.5028D+00 -.9940D-02 0.5869D-03 0.1221D-03 Line search failure
0 0.5028D+00 -.9940D-02 0.4747D-03 0.6104D-04 Line search failure
0 0.5028D+00 -.9940D-02 0.4466D-03 0.3052D-04 Line search failure
0 0.5028D+00 -.9940D-02 0.4395D-03 0.1526D-04 Line search failure

Number of function evaluations: 179

6.4 Poor Answers

This section discusses what to do if IFFCO is obtaining answers that the user feels
are unacceptable but the message “Line search failure” is not reported in the output
from IFFCO.

6.4.1 No convergence problems and poor results

If IFFCO reports convergence at many scales but poor answers are being obtained
then termtol and/or fscale may be too big. An example of this behavior follows:

m |l x|l f I g Il h cuts

0 0.1000D+01 0.8508D+00 0.1134D+01 0.5000D+00 Convergence

0 0.1000D+01 0.8508D+00 0.1701D+01 0.2500D+00 Convergence

0 0.1000D+01 0.8508D+00 0.1984D+01 0.1250D+00 Convergence

0 0.1000D+01 0.8508D+00 0.2125D+01 0.6250D-01 Convergence
Number of function evaluatioms: 12

36 Chapter 6. Trouble Shooting

6.4.2 Small maxh

If IFFCO obtains poor answers and maxh is set to a value less than 0.5, then the
iterates may have become trapped in a local minima. Using a larger value of maxh
may help.

6.4.3 Large minh

Poor answers may also be caused by choosing minh too large. If this is the case,
IFFCO may not try enough scales to resolve the minimum as precisely as possible.
If the answer IFFCO is returning is in the correct region but not as low as you
think it should be, try reducing minh by factors of two. The value of minh to use
depends on the problem, the precision required by the user, and the precision of
the hardware being used.

Appendix A

IFFCO Subroutines

Besides the main subroutine, iffco, IFFCO uses 29 other subroutines to get its
job done. Of these, nine are communication subroutines that provide a wrapper
around the PVM and MPI calls. The other 20 perform various computational and
input/output functions. All subroutine names in IFFCO are suffixed with ‘IF.” All
the subroutines are in the main IFFCO source code file (ser_iffco.f, pvm_iffco.f,
or mpi_iffco.f). Table A.1 lists the 20 computational and input/output subrou-
tines and Table A.2 lists the communication subroutines.

37

38 Appendix A. IFFCO Subroutines
Table A.1. IFFCO subroutines

inputsIF Prints out the parameters passed to IFFCO.

initIF Initializes some variables and checks to see that the
parameters passed to IFFCO have valid values.

statsIF Outputs the information in the algorithm progress
section of iffco.out.

scaleIF Scales z from the search region defined by u and 1
onto the unit hyper-cube.

unscalelF The inverse of scalelF.

funcIF Calls the user’s objective function evaluation code.

ser_gradIF Calculates a difference gradient in serial.

par_gradIF Calculates a difference gradient in parallel.

minIF Sets x,,, the location of the smallest function value,
to the current iterate, z., if f(z.) < f(@m)-
Also records f(zm)-

maxIF If f(x.) is greater than fmaxIF (the current largest
function value), sets fmaxIF to f(z.).

updateIF Updates the current iterate, gradient, and function value.

ser_linesearchIF

Performs a serial line search.

par_linesearchIF

Performs a line search in parallel.

eyelF Re-initializes the quasi-Newton matrix to the identity.
evaltolIF Calculates the tolerance, ||z — P(z — d(z))||, at the
current iterate.
quasiIF Updates the quasi-Newton matrix.
stepIF Calculates the quasi-Newton step —H ! - g where
g is the gradient at . and H is an approximation
to the Hessian.
restartIF Performs necessary steps before a restart.
takeminIF Replaces the current iterate with the point stored in

xminIF (the location of the smallest function value
encountered so far).

pointsIF

Prints f(z) and z to points.out.

39

Table A.2. Parallel communication subroutines used by IFFCO

mastersendIF | Called by the master processor to order a slave processor
to do a function evaluation.

slaverecvIF | Called by a slave processor to receive an order for a
function evaluation from the master processor.

slavesendIF | Called by a slave processor to send the result of a function
evaluation to the master processor.

masterrecvIF | Called by the master processor to receive the result of a
function evaluation from a slave processor.

getmytidIF Gets the MPI rank or PVM task id of the calling process.

getnprocsIF | Gets the number of processors available to IFFCO.

gettidIF Gets the MPI rank or PVM task id of the ith process.

comminitIF Initializes the parallel environment.

commexitIF Shuts down the parallel environment.

40

Appendix A. IFFCO Subroutines

[1]

[2]

Bibliography

K. R. BAILEY AND B. G. FITZPATRICK, Estimation of groundwater flow pa-
rameters using least squares, Tech. Rep. CRSC-TR96-13, North Carolina State
University, Center for Research in Scientific Computation, April 1996.

K. R. BAILEY, B. G. FITZPATRICK, AND M. A. JEFFRIES, Least squares es-
timation of hydraulic conductivity from field data, Tech. Rep. CRSC-TR95-8,
North Carolina State University, Center for Research in Scientific Computa-
tion, February 1995.

D. P. BERTSEKAS, On the Goldstein-Levitin-Polyak gradient projection
method, IEEE Trans. Autom. Control, 21 (1976), pp. 174-184.

L. J. CAMPBELL, Y. Evssa, P. GILMORE, P. PERNAMBUCO-WISE, D. M.
PARKIN, D. G. RICKEL, J. B. SCHILLIG, AND H. J. SCHNEIDER-MUNTAU,
The US 100-T magnet project, Physica B, 211 (1995), pp. 52-55.

T. D. Cuoi, O. J. EsLINGER, C. T. KELLEY, J. W. DAVID, AND
M. ETHERIDGE, Optimization of automotive valve train components with im-
plicit filtering, Tech. Rep. CRSC-TR98-44, North Carolina State University,
Center for Research in Scientific Computation, December 1998. Submitted for
publication.

J. W. Davip, C. Y. CHENG, T. D. CHol, C. T. KELLEY, AND J. GABLON-
SKY, Optimal design of high speed mechanical systems, Tech. Rep. CRSC-
TR97-18, North Carolina State University, Center for Research in Scientific
Computation, July 1997. Mathematical Modeling and Scientific Computing,
to appear.

J. W. Davip, C. T. KELLEY, AND C. Y. CHENG, Use of an implicit fil-
tering algorithm for mechanical system parameter identification. SAE Paper
960358, 1996 SAE International Congress and Exposition Conference Proceed-
ings, Modeling of CI and SI Engines, pp. 189-194.

L. DixoN AND G. SZEGO, The Global Optimisation Problem: An Introduction,

in Towards Global Optimization 2, L. Dixon and G. Szegd, eds., vol. 2, North-
Holland Publishing Company, 1978, pp. 1-15.

41

42

Bibliography

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

P. GiLMORE AND C. T. KELLEY, An implicit filtering algorithm for opti-
mization of functions with many local minima, STAM J. Optim., 5 (1995),
pp- 269-285.

P. GiLMORE, C. T. KELLEY, C. T. MILLER, AND G. A. WILLIAMS, Implicit
filtering and optimal design problems: Proceedings of the workshop on optimal
design and control, Blacksburg VA, April 8-9, 1994, in Optimal Design and
Control, J. Borggaard, J. Burkhardt, M. Gunzburger, and J. Peterson, eds.,
vol. 19 of Progress in Systems and Control Theory, Birkhaduser, Boston, 1995,
pp. 159-176.

P. GILMORE, P. PERNAMBUCO-WISE, AND Y. EYSSA, An optimization code
for pulse magnets, tech. rep., National High Magnetic Field Laboratory, Florida
State University, August 1994.

W. HUYER AND A. NEUMAIER, Global optimization by multilevel coordinate
search, J. Global Optim., 14 (1999), pp. 331-355.

E. JANKA, Vergleich Stochastischer Verfahren zur Globalen Optimierung,
diplomarbeit, Universitit Wien, 1999.

C. T. KELLEY, [Iterative Methods for Optimization, no. 18 in Frontiers in
Applied Mathematics, STAM, Philadelphia, 1999.

C. T. MILLER, G. A. WiLLiAMS, AND C. T. KELLEY, Transformation ap-
proaches for simulating flow in variably saturated porous media, Tech. Rep.
CRSC-TR98-01, North Carolina State University, Center for Research in Sci-
entific Computation, January 1998. Submitted for publication.

P. PERNAMBUCO-WISE, P. GILMORE, B. LESCH, Y. EvyssA, AND H. J. S.
HNEIDER MUNTAU, Systematic failure testing of internally reinforced magnets,
IEEE Transactions on Magnetics, 4 (1996), pp. 2458-2461.

D. SToONEKING, G. BILBRO, R. TREW, P. GILMORE, AND C. T. KELLEY,
Yield optimization using a GaAs process simulator coupled to a physical device
model, IEEE Transactions on Microwave Theory and Techniques, 40 (1992),
pp. 1353-1363.

D. E. SToNEKING, G. L. BiLBRO, R. J. TREW, P. GILMORE, AND C. T.
KELLEY, Yield optimization using a GaAs process simulator coupled to a phys-
ical device model, in Proceedings IEEE/Cornell Conference on Advanced Con-
cepts in High Speed Devices and Circuits, IEEE, 1991, pp. 374-383.

T. A. WinsLow, R. J. TREw, P. GILMORE, AND C. T. KELLEY, Dop-
ing profiles for optimum class B performance of GaAs mesfet amplifiers, in
Proceedings IEEE/Cornell Conference on Advanced Concepts in High Speed
Devices and Circuits, IEEE, 1991, pp. 188-197.

Bibliography 43

[20] ——, Simulated performance optimization of GaAs MESFET amplifiers, in
Proceedings IEEE/Cornell Conference on Advanced Concepts in High Speed
Devices and Circuits, IEEE, 1991, pp. 393-402.

[21] Y. YAO, Dynamic Tunneling Algorithm for Global Optimization, IEEE Trans-
actions on Systems, Man, and Cybernetics, 19 (1989).

Index

ATX, 10 Fortran 77, 4, 5, 9, 13, 17, 23, 24
BFGS, 22 Hessian, 23, 38
hf77,9
calling sequence, 17 hidden constraints, 18
for parallel version, 29
cdata, 23 IBM
clen, 23 Parallel Environment, 10
ddata, 23 Parallel Operating Environment,
dlen, 23 7,10, 11
f, 22 iffco.F, 8
fscale, 19, 34, 35 iffco.out, 21, 2528
func, 17, 24 infeasible points, 18
idata, 23
ilen, 23 LAM/MPI, 5, 9
1,19 line search, 22, 26
maxcuts. 22 in parallel, 31
maxh, 1é7 36 line search failure, 27, 33
maxit, 20 llsubmit, 11
minh, 19, 34, 36 load balancing, 23, 30, 31
n, 20 logfile, 12
option, 22, 25, 29, 30
B it
flerir:)tol, 21, 34, 35 maxit(1) exceeded, 27
w’rit 91. 25 maxit(2) exceeded, 27
X, 1é, 22’ maxprocs, 24
commexitIF, 29 mepsIF, 24
MPI, 5, 29

comminitIF, 29

convergence, 27 mpi_barrier, 29

mpi finalize, 29

difference gradient, 18 mpi_init, 29
in parallel, 30 MPICH, 5, 9
mpif77, 9
77,9 mpirun, 11
thist, 24 mpxIf, 10
fmaxIF, 25 mx, 24
fminIF, 24, 38 mx2, 24

44

Index

45

nevalsIF, 24

objective function, 13, 14, 17
output, 25

par_gradIF, 30, 31, 38
par_linesearchIF, 31, 38
par_sample main.f, 13
points.out, 21, 25, 28
PVM, 5, 29
console, 11
hostfile, 11
PVM_ARCH, 9
PVM_ROOT, 9
pvmfbarrier, 29
pvmfexit, 29

quasi-Newton update, 22, 38

sample_func.f, 13

scale, 3, 19, 21

search region, 19
ser_sample main.f, 13, 14
SP/2, 10

SR1, 22

test problems
configuration files, 12
name, 12
parameters, 12
source, 10

xIf, 10
xminlF, 24

