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ABSTRACT 
 
The traditional implementation of resonant tunneling diodes (RTD) as a high-frequency power source always requires 
the utilization of negative-differential resistance (NDR). However, there are inherent problems associated with 
effectively utilizing the two-terminal NDR gain to achieve significant levels of output power. This paper will present a 
new design methodology where resonant tunneling structures (RTS) are engineered to exhibit electronic instabilities 
within the positive-differential-resistance (PDR) region. As will be demonstrated, this approach utilizes a microscopic 
instability that alleviates the need to reduce device area (and therefore output power) in an effort to achieve low-
frequency stabilization 
 
Keywords:  resonant tunneling, positive differential resistance region, intrinsic high frequency oscillation 
 

1.   INTRODUCTION 
 

Terahertz frequencies are defined as those in the range 100GHz ~ 10THz region in the electromagnetic spectrum. 
Terahertz frequency systems have found applications in radio astronomy [1] [2], atmospheric monitoring [3], plasma 
diagnostics [4], and in the study of solid state physics. There have been growing needs for terahertz electromagnetic 
spectrum for imaging and surveillance [5], sensing and detection in biological/chemical warfare [6], imaging of bio-
molecules [7], secure communication [8], and networking [9]. Though terahertz technology plays important roles both in 
civilian and military applications, this significant region in the electromagnetic spectrum has not been opened up for 
commercial exploitation. The main reason for this is the virtual absence in this frequency range of reliable, low cost, 
miniaturized solid-state power sources[10]. Because the  terahertz frequency regime fall in between the available 
semiconductor lasers (which extend into the mid-infrared region) and microwave sources, the dearth of sources, detector, 
and interconnects for this frequency region is referred to as the famous “THz Gap” issue. 
 
Terahertz radiation can be generated based on electronics or photonics.  From the point of view of photonics, though 
photo-mixers are able to generate terahertz power output at several terahertz frequencies, the output power is limited to 
the Wµ level or below [11]. While type-II quantum cascade (QC) lasers generate power output in mid-infrared 
range[12], type-I QC-lasers can deliver only 5 ~ 19 pW at 2.5THz as reported in a recent experiment [13]. The value of 
this output power is too small to obtain system application. For cascade terahertz lasers, non-radiative relaxation 
processes forbid operation in the proximity of the materials reststrahlenbband. In addition, free carrier absorption in 
doped semiconductors, which scale at approximately , leads to increased optical losses at longer wavelengths, making 
QC-laser action in the terahertz region a challenging proposition [14]. From the point of view of electronics, while three-
terminal devices reach higher and higher frequencies [15], two- terminal fundamental oscillators are a key technology 
that can open the terahertz regime [13]. Up to now, the known two-terminal power sources include impact avalanche 
transit-time (IMPATT) diodes, GUNN diodes, tunnel injection transit-time (TUNNETT) diodes, superlattice electronic 
devices (SLED), and resonant tunneling diodes (RTD). However, the output powers of these power sources in the 
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terahertz frequency regime are much lower than engineering needs. Basically, most of the two-terminal devices can only 
provide enough power for applications at the very lower limits of the terahertz electromagnetic spectrum.   
 
Although an RTD, designed via the most common method, can provide high frequency output at a frequency up to 712 
GHz, its output power is only 0.3µ W[16]. The common RTD oscillators have some inherit drawbacks. In common 
RTD oscillators, a RTD is utilized as a component in a traditional two-terminal oscillator source. The RTD is biased in 
its negative differential resistance (NDR) region. This leads to several problems severely influencing the performance of 
the RTD oscillators power output. First, any noise fluctuations will be amplified when the RTD and it’s inherit charge 
storage capacitance resonates in an unstable manner with some external charge storage element (e. g., inductance of the 
contact lead). This effect will finally drive the balance point of the oscillation to the edge of the NDR region. Second, 
since a RTD acts as an unstable gain mechanism, and oscillation is produced by resonating with an external element, the 
energy associated with the oscillation must pass through a physical contact, which will always possess some lose. Third, 
the NDR of a RTD will encourage oscillation in the bias circuitry down to zero frequency. Therefore, one must design 
the circuit coupled to the RTD-based oscillator so that it is low-frequency stable to prevent energy losses to lower 
frequency modes. This requires the designer to reduce the RTD capacitance, thereby the cross-section area of the RTD. 
This reduction in the RTD device cross-section area severely limits the available output power of the oscillator at high 
frequencies. 
 
The above research review shows that the famous “THz Gap” is still unfilled. As such, we believe that the potential and 
future solid state power sources that will fill the Gap have to combine the features of particle (transport based devices) 
and waves (wave based devices)[17][11]. The devices should be “quantum transport devices”[12]. Based on this 
philosophical idea, we present the following theory for the design of terahertz frequency quantum oscillators operating in 
the positive differential resistance region. As stated below, the oscillation is caused by the coupling of energy subbands 
of the system, and  we call these type of oscillators quantum energy level coupling oscillators (QELCO) [18]. 
 

2. Design Principle 
  
The origin of the intrinsic current oscillation in double barrier quantum well structures (DBQWS) was a long-time 
unsolved device physics problem[19] ~ [21]. It was resolved only recently by the authors of the paper and their co-
workers [18][22] ~ [32]. The research results reveal the fundamental physics of quantum transport through a DBQWS. 
The key for understanding the origin of the intrinsic current oscillation is that the DBQWS becomes an open multi-
subband system once an emitter quantum well (EQW) is created in front of the emitter barrier[18][31]. 
  
2.1 Origin of Intrinsic Current Oscillation in Multi-Subband Systems 
 
For an open multi-subband system, without considering the movement of carriers in a lateral direction, the wave function 
of the system can be written as 
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kE  is the energy of the  energy level of the system (the energy of the  quasi-bound state); kth kth ),( tzkψ  is the 

wavefunction of the kth  quasi-bound state; kφ  is the amplitude of the wavefunction, a slow-varying function of . 
With this wavefunction, the density of electrons in the structure can be written as 
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The oscillation terms in the above equation will usually be smeared out by the cancellation effect induced by variations 
in phase (e.g., unequal subband structures leading to conditions such that ) and zero coupling 
between the states. When these conditions apply, the transport can be described simply as an individual summation over 
single subbands. Hence, there is no coupling between the bands and no intrinsic oscillation. In fact, it is this type of 
situation where the concept of subband transport is most often applied and most useful. The time-dependent nature of the 
electron transport may arise due to inter-subband coupling under certain oscillation conditions. These conditions may be 
conveniently classified into three categories that will now be considered individually as follows:. 
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Case 1. Maximum Subband Coherence 
 
If we assume that conditions sufficient for intrinsic oscillations exist, the oscillations in density will occur when all the 
energy-dependent phase factors in Eq. (3) are equivalent and when all contribute to the instability. This condition of 
maximum coherence is directly defined by the resulting subband structure and is given by the relation 
               )()()()( tEtEtEtE kllk ∆=−=∆       and  { } { }ji kkll ∈∈ , , kl < ,                            (4) 

where the sets {  and }il { }jk  are of equal numbers and assume all possible values from the number sequences 

. It is important to note that the phase factor defined in Eq. (3) must possess a natural time dependency. This is 
true because any condition of oscillation in current density will be accompanied by a corresponding oscillation in the 
band structure of the device. In this case, the carrier density can be written as 

n,,2,1 ⋅⋅⋅
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where . The sum of all subband coupling terms (i.e. the sum in the second terms on RHS of Eq. 

(5) ) defines the amplitudes for oscillations in electron density.  
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Case 2. Partial Subband Coherence 
 
The next level of oscillation condition is characterized by the condition where a finite and countable number of energy-
dependent phase factors in Eq. (3) are equivalent and where each of these contributes to the instability. This condition of 
partial subband coherence is defined by 
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where the sets {  and }il { }jk  of equal numbers with )( kl <  assume some of the values from the number sequences 

. In the case, the density of electrons can be expressed as  n,,2,1 ⋅⋅⋅
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Under these conditions, the in-phase contributions from only the second terms on the RHS of Eq. (7) will contribute to 
the intrinsic oscillations as the last terms lack sufficient coherence. 
 
Case 3. Minimum Subband Coherence 
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The last and weakest form of intrinsic oscillations is characterized by the condition where only a single set of subbands 
contributes to the instability. Assuming that the  and  subbands contribute to the oscillation where  and  are 

the only subband indices that contribute to the oscillation in the energy level index 
il jk il jk

n,,2,1 ⋅⋅⋅ . Thus, the density of the 
electrons can be written as 
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As in the prior case, the in-phase contributions from only the second terms on the RHS of Eq. (8) will contribute to the 
intrinsic oscillations.  
 
For each of the three previous subband coherence cases, the electron density can be expressed most generally as 
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where the functions G  are slowly-varying functions of time. It accounts for the contribution to the charge density from 
the coupling between the subbands.  Here, the incoherent subband terms in Eq. (1) have been excluded. Also while the 
first terms have been retained, it should be noted that they only contribute to short term transients and to the final static 
components of electron density[23][27]. The expression defined in Eq. (9) reveals that intrinsic high frequency 
oscillations can arise in any quantum system from the wavefunction coupling between multi-subbands. The oscillations 
occur once the subbands structure satisfies one of the criteria given in Eqs.(4) ~ (8) and the inter-subband coupling 
function G is not equal to zero.  These criteria and the non-zero-coupling condition ( ) set up the fundamental  
conditions that a multi-subband semiconductor system has to be satisfied if the intrinsic current oscillations exist in the 
system. Further analysis of the equations can provide a clear physical picture regarding the creation of the oscillation. 
The key is the energy-dependent phase factors in Eq.(9). It should be noted that prior simulations have shown that the 
self-consistent potential varies in a periodical form [23].  Thus, it is reasonable to express the energy difference between 
the energy subbands as 
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where ),( tf ω  is a periodical function and ω  is the oscillation frequency. 0E∆  is defined as the average energy 
difference between two energy levels for a system subject to intrinsic oscillations, or the energy difference at the balance 
point. Obviously, the phase difference in Eq.(9) between time  and  can be written as 1t 2t
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Recognizing that the phase variation in one period is π2 and the periodicity of the function ),( tf ω , the oscillation 
frequency of the current, due to the subband structure, is given by 
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where T  is the period of the intrinsic oscillation. The previous derivation allows us to establish a physics-based 
description for the creation of the intrinsic oscillation. The accurate physical model for this instability process will be 
able to describe the time-dependent variations in electron density and potential energy. Consider for example an arbitrary 
oscillation process and assume that the density of electrons at a particular real-space point reaches its maximum value at 

. The corresponding potential energy at this same space point will also assume its maximum value at time . This 0t 0t
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statement is true at least at the level of Hartree approximation to electron-electron interactions. Assuming an oscillation 
condition exists, this variation in both electron density and electron potential energy will cycle periodically as the phase 
varies over π2 . Eq.(9) for electron density directly exhibits this type of behavior through the energy-dependent phase 
factors. In turn, this variation of density in time would impose variations in the potential energy. It should be noted that 
the periodical variation of potential energy in time definitely influences the energies of the subbands of the systems. This 
process also definitely leads to the oscillation of the current because of the periodical variation of the subband energies 
of the systems. This is the key mechanism leading to the occurrence of intrinsic current oscillations in multi-subband 
systems. 
 
This quantum-based model allows one to analyze the intrinsic oscillation process to determine the underlying physical 
mechanisms responsible for the instability. Specifically, if detailed simulations are utilized to derive energies of the 
subbands and the appropriate  under the condition of intrinsic oscillation, then insights into the fundamental 
physical mechanism response for the instability can be obtained. The next two subsections of this paper will present 
simulation tools and studies that allow for a complete analysis of the intrinsic oscillations in DBQWSs. In particular, 
Wigner-Possion Equations simulations and Schrödinger-based simulations will be used together to derive current density 
oscillations, the subband energy differences, and the subband wavefunction amplitudes. This information will be 
combined with the previous model to reveal the fundamental origins of intrinsic oscillations. 
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4.  NUMERICAL EXPERIMENT VERIFICATION OF THE DESIGN THEORY 

 
In this subsection, numerical simulation methods will be used against a heterostructure system to verify the multi-
subband theory for the design of a QELCO. In order to incorporate the dissipation effects (electron-phonon interactions), 
the Wigner-Poisson device model, that is well accepted, will be used to model the quantum devices. The resulting self-
consistent potential will be used as an input for solving the Schroedinger equation to get the energy level structure so that 
the oscillation frequency can be calculated by using Eq.(11). The calculated frequency can then be used to compare with 
the Wigner-Poisson result to verify the theory.  
 
a). Wigner-Poisson Model of Quantum Devices 
The Wigner function formulation of quantum mechanics was selected for this study because of its many useful 
characteristics for the simulation of quantum-effect electronic devices, including the natural ability to handle dissipate 
and open-boundary systems. The Wigner function equation was first employed in quantum device simulation by 
Frensley [33]. Later, Kluksdahl et al incorporated Poisson's equation (PE) and applied the model to the study of RTD’s 
with self-consistent method [34]. With the lowest order approximation to scattering being considered only, we have  
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where h is the Planck's constant, is the electron effective mass and U  is the conduction-band-edge. Here, 
,  is the potential energy, and 

*m
VuU ∆+= u V∆ is the band offset of a heterostructure system. An appropriate 

treatment of scattering in semiconductors is very important for getting accurate transport results. Recent research has 
shown that the computation burden associated with a detailed consideration of electron-phonon scattering is very 
formidable[35]. This huge amount of computation time would severely impede a study such as the one presented here if 
the electron scattering was modeled from first principles. Thus, the relaxation time approximation to scattering has been 
employed. The relaxation time approximation is an well-accepted approximation to scattering in numerical calculations. 
In terms of the relaxation time approximation to scattering, the collision terms in the above equation can be written as 
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where τ  is the relaxation time and  is the equilibrium Wigner function. The device under study is subject to open 
boundaries at the emitter and collector, hence, the boundary conditions for the Wigner function equation are 
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The second equation used in the RTD model is the Poisson 

                                                   [ ])()()(
2

2

2

znzNqzu
dx
d

d −=
ε

,               (15) 

where ε  is the dielectric permitivity,  is the electrostatic potential, q is the electronic charge, is the 

concentration of ionized dopants, and is the density of electrons, given by 
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The current density is written as 
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b). Determination of Subband Energies  
 
For the quasibound states, the wavefunctions of the states can be written as  
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where  is defined by Eq.(2). Substituting this wavefunction into time-dependent Schrödinger equation, we can, 
since we have assume that the amplitude of the wavefunction is a slow variation function of time, got the time-
independent like Schrödinger equation as the follow 
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Here,  is potential. Pre-research shows that  the amplitude of the potential  is small  [24]. For quasi-bound states, 
the boundary conditions can be written as 

),( tzV
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where we have defined  as the boundary between the reservoir and the emitter of a device. In Eq.(20), the 
potential profile of the device is taken from the Wigner-Poisson simulation result. Since the potential profile is 
complicated, the Schroedinger equation can only be solved by numerical method.  

0=z

 
By numerically solving the Schrödinger equation, one can calculate the energy difference between subbands. The energy 
differences between subbands are time-dependent and oscillatory if the current oscillates. By setting the oscillatory part 
of the energy difference to zero, we can get 0E∆ . Thus, the oscillatory frequency of the current can be calculated by 
using Eq.(11). Comparing the frequency calculated by using Eq.(11) and the frequency from the simulated results by 
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solving the Wigner-Poisson equations, we are able to verify the correctness of our design theory of a QELCO and the 
theory on the origin of intrinsic current oscillation through a quantum system.   
 
c). Simulation Results and Verification 
According to the design theory of a QELCO, the current oscillation in a multi-subband system exists as long as the 
subband energy difference satisfies one of the three criteria and the non-zero-coupling condition stated in Section 2.2.1. 
In order to verify the QELCO concept provided above, a double barrier quantum well structure (DQWES) as shown in 
Fig. 2 is employed in the numerical simulation. This structure has been used by many researchers to show the current 
instability in a double barrier quantum well structure[20][36]. The parameters used in our simulation are the following. 
Momentum and position space is broken into 72 and 86 points, respectively. The donor density is 

particles/ ; the compensation ration for scattering calculations is 0.3; the barrier and well widths are 30 and 
50Å, respectively; the simulation box is 550Å; the barrier potential is 0.3eV, corresponding to ; the 
device temperature is 77K except that we point out; the effective mass of electron is assumed to be a constant and equals 
to 0.0667 ; the doping extend to 30Å before the emitter barrier and after the collector barrier; the quantum-well region 
is undoped. Bulk GaAs parameters are used to calculate the relaxation time and the chemical potential. The chemical 

potential is determined by 
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Fig. 1   Geometric structure of the device used in the simulation. 
 
 
 
                                                                    
 
 
 
 
 
 
 
 
             
 
 
 

 

Fig. 2 I-V characteristics of the double barrier quantum well structure. The bias voltage 
window is in the range from 0.240V to 0.248V. The value of the current density in the bias 
voltage window in this figure is the time-average of the time-dependent current density 
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Fig.2 shows the I-V characteristics of the double barrier quantum well structure (DBQWS) used in the simulation. It 
reproduces the main features of the experimental results, thereby verifying the correctness of our simulation [23].   In the  
simulation, we find a bias voltage window in which the current oscillates is shown in Fig.2 and Fig.3. The oscillation 
frequency is 2.8THz. The current oscillation is intrinsic. Being a long-time unsolved problem, the origin of the intrinsic 
current oscillations has been explained by the dynamic creation of an EQW in front of the emitter barrier [18] [23] and 
the theory mentioned above in the paper. We have presented a detailed explanation on why there are no current 
oscillations outside of the bias voltage window [18][23][25][29][31]. The cause for no current oscillation outside of the 
bias voltage window is that the subband structures do not satisfy the oscillation criteria and the non-zero-coupling   
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0E∆  into Eq.(11), we can get the current oscillation frequency 2.68THz.   Fig.3 shows that the numerical simulation 
result of the current oscillation frequency (from Wigner-Poisson model) is 2.8THz. Hence, the theory presented in 
Section 2.2.1 of this paper provides an excellent explanation to the numerical experiment of intrinsic current oscillation 
in a double barrier quantum well system.  
 
 

5. NEW DEVICE STRUCTURE AND ANALYSIS 
 
Although our numerical experiment clearly shows the existence of intrinsic current oscillations at terahertz frequency in 
a multi-subband system, the bias voltage window in which the current oscillates for the device structure described above 
sits in the negative differential resistance region. As stated previously, current oscillations in negative differential 
resistance regions will severally limit the value of the output power of power sources since the area of the cross-section 
of the device has to be small. In order to overcome this engineering problem in design of the DBQWS-based teraherz 
oscillator, a shallow well is “built” just in front of the emitter barrier, as shown in Fig.6. This shallow well changes the 
condition that a deeper and wider EQW can be created, so that the criteria for the creation of the intrinsic current 
oscillation in the DBQWS can be realized at bias voltages outside of the negative resistance region. In terms of this 
design skill, the I-V characteristics of the device is changed. The bias voltage window is moved out of the negative 
differential resistance region. Fig.7 and Fig.8 show the I-V characteristics and the time-dependent current in the new bias 
voltage window, respectively 
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Fig. 6  A QELCO device structure and conduction band profile  
illustration. 
 
 
 
 
          
Fig.7 and Fig.8 show the salient features of the suggested terahertz power source, the QELCO. These features can be 
summarized  as follows. 
• The bias voltage window in which the current oscillates is located in positive differential resistance region. Thus, 

the area of the cross-section of the device can be larger. Because of this, the QELCO can produce larger output 
power.  

• The output power per unit area is large. From classical Electromagnetism, the average output power can be 
approximately written as [37] 
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       where  is the intrinsic impedance of the material and  is the amplitude of the electric field. Without    0Z aE
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       field can be estimated by     
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       where  is the effective mass of electrons; n is the density of the electron. The   current density shown   *m
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       It should be noted that this value of the output power is larger than the expected experimental value. This  
       is because the model used in the pre-research is one-dimensional. In fact, the lateral motion of electrons 
       will reduce the value of the current density, thereby  reducing the output power. Regardless, this value of  
       the output power is the largest theoretical value estimated by a one-dimensional model in  terahertz  
       frequency range known. Separated estimation shows that the output power should be at least in the order 
       of several mW [39]. 
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                                Fig.8  Time-dependent current density in the bias voltage window. The oscillation  
                                frequency is tunable. For the structure, the frequency tuning region is 3.57THz ~ 3.85THz.   
 
• The current oscillation is intrinsic, independent of the external circuit. This feature provides conveniences to 

designers of the QELCO.  
• The operation temperature of the QELCO is in the temperature region of liquid nitrogen. In contrast, QC lasers can 

provide terahertz power output in the order of pico-watts only at very low temperature, such as 5 0K . 
• The output frequency of the QELCO is electrically tunable since the subband structure of the system is tunable with 

the tuning of the bias voltages. For the device structure shown in Fig.7, the output frequency is tunable in the range 
of 3.57 ~ 3.85 THz. In the simulation of another device structure, a frequency tuning range 2.5 ~ 3.3 THz has been 
found. Thus, the frequency tuning range can be enlarged by carefully designing the device structure.   

 
                    6.  CONCLUSION 
 
In this paper, we presented a design theory of a terahertz frequency quantum oscillator operating in the positive 
differential resistance region.  The operational principle of the oscillator is based on quantum interference between the 
injected electron wave and the reflected electron wave leading to the depletion of the charges in part of the region in 
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front of the emitter barrier. The action of electron waves further leads to the creation of an emitter quantum well. 
Following the creation of the emitter quantum well, the coupling between the energy subbands leads to the current 
oscillations in the structure.  Our simulation shows that a small well in front of the emitter barrier can change the creation 
condition of the emitter quantum well. This design technique presented successfully leads to instability behavior located 
within the positive differential resistance region.  Analysis shows that the QELCO operating in  a positive differential 
resistance region has the potential of providing more output power than other high frequency power sources in the  
terahertz frequency domain. 
 
Support by the DURINT grant is acknowledged.  
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