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Abstract. We bound the condition number of the Jacobian in pseudo arclength continuation problems,
and we quantify the effect of this condition number on the linear system solution in a Newton GMRES solve.

In pseudo arclength continuation one repeatedly solves systems of nonlinear equations F (u(s), λ(s)) = 0
for a real-valued function u and a real parameter λ, given different values of the arclength s. It is known that
the Jacobian Fx of F with respect to x = (u, λ) is nonsingular, if the path contains only regular points and
simple fold singularities. We introduce a new characterization of simple folds in terms of the singular value
decomposition, and we use it to derive a new bound for the norm of F−1

x . We also show that the convergence
rate of GMRES in a Newton step for F (u(s), λ(s)) = 0 is essentially the same as that of the original problem
G(u, λ) = 0. In particular we prove that the bounds on the degrees of the minimal polynomials of the
Jacobians Fx and Gu differ by at most 2. We illustrate the effectiveness of our bounds with an example from
radiative transfer theory.
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one update
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1. Introduction. Numerical continuation is the process of solving systems of nonlinear
equations G(u, λ) = 0 for various values of a real parameter λ. Here u : RN → R is a
real-valued function and G : RN+1 → RN . An obvious approach for implementing numerical
continuation, called parameter continuation [6,9,15], traces out a solution path by repeatedly
incrementing λ until the desired value of λ is reached. In each such iteration, the current
solution u is used as an initial iterate for the next value of λ. Although parameter continu-
ation is simple and intuitive, it fails at points (u, λ) where the Jacobian Gu is singular. In
this paper we consider singularities which are simple folds.

The standard way to remedy the failure of parameter continuation at simple folds is
to reparameterize the problem by introducing the arclength parameter, s, so that both u
and λ depend on s. This idea, known as pseudo-arclength continuation [6,9,15], implements
parameter continuation on F (u(s), λ(s)) = 0 with s as the parameter instead of solving
G(u, λ) = 0 with λ as the parameter. Thus pseudo-arclength continuation requires that the
Jacobian Fx of F be nonsingular. It is known that Fx is nonsingular at simple folds and
points where Gu is nonsingular [9].

Our first goal (§ 3) is to quantify this nonsingularity. To this end we provide a new
characterization of simple folds in terms of the singular value decomposition (SVD) of Gu.
From the SVD, we derive a new bound for ‖F−1

x ‖2. This bound can be used to limit the
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arclength step in Newton’s method. As a byproduct we obtain a refinement of Weyl’s
monotonicity theorem [19] for the smallest eigenvalue of a symmetric positive semi-definite
matrix (§3.1).

We also examine (§4) how the conditioning of Fx affects the convergence of the inner
GMRES [20] iteration in a Newton-GMRES solver [1,2,11,12]. We show that the eigenvalue
clustering of the Jacobian Fx in the reformulated problem is not much different from that
of the Jacobian Gu in the original problem. To be precise, the upper bound on the degree
of the minimal polynomial of Fx differs from that of Gu by at most two. This implies [3,14]
that the convergence of GMRES as a linear solver in a Newton step does not slow down
when parameter continuation is replaced by pseudo-arclength continuation.

At last (§5) we illustrate our findings with a numerical example from radiative transfer
theory. These numerical results, combined with our bounds, support the use of pseudo-
arclength continuation in solution paths that contain simple folds.

2. Background. We briefly review theory and algorithms for solving numerical con-
tinuation problems G(u, λ) = 0, where λ ∈ R, u : RN → R and G : RN+1 → RN . We
discuss parameter continuation §2.1 and pseudo-arclength continuation in §2.2. We use the
abbreviations

Gu ≡ ∂G

∂u
, Gλ ≡ ∂G

∂λ
.

2.1. Simple parameter continuation. Parameter continuation [6,9,15] is the simplest
method for solving G(u, λ) = 0. The idea is to start at a point λ = λinit and solve G(u, λ)
for u, say by Newton’s method. Use the solution u0 as the initial iterate to solve the next
problem G(u, λ+ dλ) = 0. Algorithm paramc below is a simple implementation of parameter
continuation from λinit to λend = λinit + n dλ where n denotes the maximum number of
continuation iterations.

paramc(u,G, λinit, λend, dλ)

Set λ = λinit, u0 = u
while λ ≤ λend do

Solve G(u, λ) = 0 with u0 as the initial iterate to obtain u1

u0 = u1

λ = λ + dλ
end while

While parameter continuation appears to be a reasonable method for solving G(u, λ) = 0,
it fails at points that violate the assumptions of the implicit function theorem. Such points
of failure are called singular points.

Definition 2.1. A singular point is a solution (u0, λ0) to G(u, λ) = 0 for which
Gu(u0, λ0) is singular.

In order to understand why parameter continuation fails at singular points, we recall
the implicit function theorem [9, 18]. The norm ‖ · ‖ denotes the Euclidean norm, and



Arclength Continuation 3

Ck(Ω) denotes the space of k times continuously differentiable functions from an open subset
Ω ⊂ RN+1 to RN .

Theorem 2.2. [Implicit Function Theorem:] Let Ω be an open subset of RN+1 and
let G ∈ Ck(Ω) for some integer k > 0. Let Gu and Gλ be Lipschitz continuous in Ω̄, the
closure of Ω. If

• (u0, λ0) ∈ Ω,
• G(u0, λ0) = 0,
• Gu(u0, λ0) is nonsingular,

then there are ρ > 0 and ε > 0 such that there is a unique solution

v ∈ Bρ(u0) ≡ {u | ‖u − u0‖ < ρ}
of G(u, λ) = 0 for all λ ∈ (λ0 − ε, λ0 + ε) and u ∈ Bρ(u0). Furthermore, v is a k times
continuously differentiable function of λ.

If the assumptions of the implicit function theorem are satisfied then Newton’s method
converges q-quadratically, as shown below. We will use the following definition of quadratic
convergence for Newton’s method.

Definition 2.3. Let {xn} ⊂ RN be a sequence and let x∗ ∈ RN . We say that xn → x∗

q-quadratically as n → ∞, if xn → x∗ and if there is K > 0 such that

‖xn+1 − x∗‖ ≤ K‖xn − x∗‖2.

The following corollary presents conditions under which Newton’s method applied to
G(u, λ) = 0 converges q-quadratically.

Corollary 2.4. Let the assumptions of Theorem 2.2 hold. Then there is δ > 0,
which depends only on ‖G−1

u (u0, λ0)‖ and the Lipschitz constants of Gu and u, such that if
|λ − λ0| < δ then Newton’s method with initial iterate u0 converges q-quadratically to the
solution u∗.

Proof. Define the Lipschitz constants

‖u(λ) − u(µ)‖ ≤ γu|λ − µ|, ‖Gu(u, λ) − Gu(v, µ)‖ ≤ γG(‖u − v|‖ + |λ − µ|).
According to [11]

‖u0 − u∗‖ <
1

2γG‖G−1
u (u0, λ0)‖

so choosing

δ <
1

2γuγG‖G−1
u (u0, λ0)‖

completes the proof.

Theorem 2.2 and Corollary 2.4 suggest that points (u, λ) for which Gu is singular may
cause the loss of uniqueness in the solution to G(u, λ) = 0 as well as the failure of Newton’s
method, and therefore failure of Algorithm paramc. Thus we need a continuation method
that does not fail at singular points.
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2.2. Pseudo-arclength Continuation. Pseudo-arclength continuation [6,9,15] avoids
the problems of Algorithm paramc at singular points by using an arclength parameterization.
The curve in Figure 5.1, for instance, has a singularity with respect to the parameter λ. If we
choose arclength s as the parameter λ, and x = (uT , λ)T in place of u, we can compute the
curve with simple parameter continuation. The curve in Figure 5.1 has a simple fold, which
is the singularity of interest for this paper. Formally, a simple fold is defined as follows.

Definition 2.5. A solution (u0, λ0) of G(u, λ) = 0 is a simple fold if
• dim(Ker(Gu(u0, λ0))) = 1 and
• Gλ(u0, λ0) 6∈ Range(Gu(u0, λ0)).

To develop a pseudo-arclength continuation method, we assume that x depends smoothly
on s. Then one can differentiate G(u, λ) = 0 with respect to s and obtain

dG(u(s), λ(s))

ds
= Guu̇ + Gλλ̇ = 0.(2.1)

Equivalently, one can differentiate G(x) = 0 and obtain Gxẋ = 0. Here, ẋ denotes the
derivative with respect to s. Because the norm is the Euclidean norm and s is arclength,

‖ẋ‖2 = ‖u̇‖2 + |λ̇|2 = 1.(2.2)

Since we introduced a new parameter s, we must add an equation to G(u, λ) = 0 so that
the number of equations equals the number of unknowns and we have a chance of obtaining
a nonsingular Jacobian for the reformulated problem. Hence, we work with the extended
equations

F (x, s) =

(

G(x)
N (x, s)

)

=

(

0
0

)

.(2.3)

The normalization equation N = 0 is an approximation of (2.2) where

N (x, s) = ẋT
0 (x − x0) − (s − s0) = 0.(2.4)

This equation says that the new point on the path lies on the tangent vector through the
current point x0.

Given a known point (x0, s0), the pseudo-arclength continuation method increments
arclength by ds = s− s0, and solves (2.3) with the normalization (2.4) by Newton’s method
with initial iterate x0. Algorithm psarc is a simple implementation of pseudo-arclength
continuation.

Since pseudo-arclength continuation is just simple parameter continuation applied to
F with s as the parameter, Corollary 2.4 gives conditions for the convergence of Newton’s
method in pseudo-arclength continuation.

Corollary 2.6. Let the assumptions of Theorem 2.2 hold for F . Then there is δ > 0,
which depends only on ‖F−1

x (x0, s0)‖ and the Lipschitz constants of Fx and x, such that if
|s − s0| < δ then Newton’s method with initial iterate x0 converges q-quadratically to the
solution.
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psarc(u, F, send, dλ)

Set s = 0, x0 = (uT
0 , λ0)

T

while s ≤ send do

Approximate ẋ
Solve F (x, s) = 0 with x0 as the initial iterate obtain x1

x0 = x1

s = s + ds
end while

The proof of Corollary 2.4 shows that the step in arclength is bounded by

δ <
1

2γxγF‖F−1
x (x0, s0)‖

,

where γx and γF are Lipschitz constants for x and F , respectively. Therefore a bound on
‖F−1

x ‖ is an important factor in bounding the arclength step. In the next section we present
the main result of this paper, a new bound on ‖F−1

x ‖.
3. Nonsingularity of Fx. For a solution x0 = (u0, λ0) to G(u, λ) = 0, we present an

upper bound on ‖F−1
x (x0, s0)‖ in the case that

• Gu(u0, λ0) is nonsingular or
• (u0, λ0) is a simple fold of G(u, λ) = 0.

In order to derive the bound, we introduce a new characterization of simple fold, which is
based on the singular value decomposition of Gu. We prove the bound in §3.2. In §3.1
we refine Weyl’s monotonicity theorem for the smallest eigenvalue of a symmetric positive
semi-definite matrix, which we need for the proof.

Let
Gu(u, λ) = UΣV T

be a singular value decomposition (SVD) of Gu(u, λ) where

Σ = diag(σ1, σ2, . . . , σN), σ1 ≥ σ2 ≥ . . . ≥ σN and uN ≡ UeN

where eN is the last column of the N ×N identity matrix. The trailing column uN of U is a
left singular vector associated with the smallest singular value σN . Since the singular values
are continuous functions of the elements in Gu(u, λ), they are also continuous in λ. If

σN−1 ≥ σ̄ > 0

for all (u, λ) then the nullity of Gu(u, λ) is at most one. If in addition σN = 0 then uN spans
the left nullspace of Gu(u, λ). From the direct sum

Ker(GT
u ) ⊕ Range(Gu) = RN

we see that Gλ(u0, λ0) is not in the Range(Gu) if and only if GT
λ uN 6= 0. Hence we have a

new, equivalent definition of simple fold.
Definition 3.1 (Simple Fold via SVD). Let (u0, λ0) be a solution of G(u, λ) = 0, and

let uN be a left singular vector of Gu(u0, λ0) associated with σN .
Then (u0, λ0) is a simple fold if
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• dim(Ker(Gu(u0, λ0))) = 1 and
• uT

NGλ(u0, λ0) 6= 0.
Continuity of GT

λuN implies that there is α > 0 such that for all (u, λ)

max

(

σ2
N , |uT

NGλ|2
gap

gap + ξ2

)

≥ α > 0,

where
gap ≡ σ2

N−1 − σ2
N , and ξ ≡ |uT

NGλ| + ‖(I − uNuT
N)Gλ‖.

Theorem 3.2. Let Ω̄ be the closure of an open subset Ω ∈ RN+1, and let G be con-
tinuously differentiable in Ω̄. Let x0 = (u0, λ0) in Ω̄ be a solution to G(u0, λ0) = 0, and
N (x0, s0) = 0 with ‖ẋ0‖ = 1. Let τ ≥ 0 be such that ‖Guu̇0 + Gλλ̇0‖ ≤ τ .

Assume that for all (u, λ) in Ω̄ there exists α > 0 such that

σN−1 > 0, max

{

σ2
N , (uT

NGλ)
2 gap

gap + ξ2

}

≥ α,

where
gap ≡ σ2

N−1 − σ2
N , ξ ≡ |uT

NGλ| + ‖(I − uNuT
N)Gλ‖.

If τ < α, then for all x = (u, λ) in Ω̄, the smallest singular value σmin(Fx) of the Jacobian
Fx of F (x, s) is bounded from below with

σmin(Fx) ≥
√

1 − τ max
{

1

α
, 1

}

.

We postpone the proof of Theorem 3.2 until §3.1 in order to derive an auxiliary result
first.

3.1. Lower Bound for the Smallest Eigenvalue. We derive a lower bound for the
smallest eigenvalue of the rank-one update A + yyT , where A is a real symmetric positive
semi-definite matrix of order N , and y is a real N × 1 vector.

Let β1 ≥ . . . ≥ βN be the eigenvalues of A. Weyl’s monotonicity theorem [19, Theorem
(10.3.1)] implies bounds for the smallest eigenvalue of A + yyT :

βN ≤ λmin(A + yyT ) ≤ βN−1.

Intuitively one would expect that λmin(A + yyT ) is larger if y is close to an eigenvector of
βN . We confirm this by deriving lower bounds for λmin(A + yyT ) that incorporate the angle
between y and the eigenspace of βN .

Theorem 3.3. Let A be an N × N real symmetric positive semi-definite matrix, uN

an eigenvector of A associated with βN , ‖uN‖ = 1, and y 6= 0 a real N × 1 vector. Set
yN ≡ uT

Ny. Then

λmin(A + yyT ) ≥ max

{

βN , y2
N

gap

gap + ξ2

}

(3.1)
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where gap ≡ βN−1 − βN and ξ ≡ |yN | +
√

‖y‖2 − |yN |2.
Proof. We first show that

λmin(A + yyT ) ≥ min{βN + y2
N

gap

gap + ξ2
, βN−1

y2
N

ξ2
}(3.2)

is lower bound for λmin(A + yyT ) = min‖x‖=1 xT (A + yyT )x.
Let

A = U







β1
. . .

βN





 UT

be an eigendecomposition of A, and x be any real vector with ‖x‖ = 1. Partition

UT x =
(

x̄
xN

)

, UT y =
(

ȳ
yN

)

so that ξ = |yN | + ‖ȳ‖. Then

xT (A + yyT )x ≥ βN−1‖x̄‖2 + βNx2
N + (yT x)2.

If ‖x̄‖ ≥ |yN |/ξ then
xT (A + yyT )x ≥ (βN−1y

2
N)/ξ2,

which proves the second part of the bound in (3.2).
If ‖x̄‖ < |yN |/ξ then |yN | − ‖x̄‖ξ > 0, and it makes sense to use |xN | ≥ 1 − ‖x̄‖ in

|yT x| = |yNxN + ȳT x̄| ≥ |yNxN | − ‖x̄‖‖ȳ‖ ≥ |yN | − ‖x̄‖ξ.
Hence

xT (A + yyT )x ≥ βN−1‖x̄‖2 + βNx2
N + (yT x)2 ≥ βN + y2

N + (gap + ξ2)‖x̄‖2 − 2ξ‖x̄‖|yN |.
This is a function of ‖x̄‖ which has a minimum at ‖x̄‖ = |yN |ξ/(gap + ξ2). Hence

xT (A + yyT )x ≥ βN + y2
N

gap

gap + ξ2
,

which proves the first part of the bound in (3.2).
With the help of (3.2) we now show the desired bound (3.1). Weyl’s theorem [19,

Theorem (10.3.1)] implies λmin(A + yyT ) ≥ βN , which proves the first part of the bound in
(3.1). For the second part of the bound in (3.1), we use the fact that the eigenvalues of A
are non-negative, hence βN−1 ≥ gap and

βN−1

ξ2
≥ gap

gap + ξ2
.

Substituting this into (3.2) gives the second part of the bound in (3.1)

min(A + yyT ) ≥ min{βN + y2
N

gap

gap + ξ2
, y2

N

βN−1

ξ2
}

≥ min{βN + y2
N

gap

gap + ξ2
, y2

N

gap

gap + ξ2
} = y2

N

gap

gap + ξ2
.
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The quantity gap in Theorem 3.3 is the absolute gap between the smallest and next
smallest eigenvalues. The theorem shows that λmin(A + yyT ) is likely to be larger if y has a
substantial contribution in the eigenspace of βN . The bound in Theorem 3.3 is tight when
y is a multiple of uN . That is, if |uT

Ny| = ‖y‖ then λmin(A + yyT ) = min{βN + ‖y‖2, βN−1}.
Now we are in a position to complete the proof of Theorem 3.2.

3.2. Proof of Theorem 3.2. Define the residual r ≡ Guu̇0 + Gλλ̇0 and form

FxF
T
x =

(

Gu Gλ

u̇T
0 λ̇0

) (

GT
u u̇0

GT
λ λ̇0

)

=
(

GuG
T
u + GλG

T
λ r

rT 1

)

.

The eigenvalues of FxF
T
x are the squares of the singular values of Fx. Applying Theorem 3.3

to GuG
T
u + GλG

T
λ with A = GuG

T
u , y = Gλ, βN = σ2

N , βN−1 = σ2
N−1 and gap = σ2

N−1 − σ2
N

shows λmin(GuG
T
u + GλG

T
λ ) ≥ α. Hence we can write

(

GuG
T
u + GλG

T
λ 0

0 1

)−1

FxF
T
x = I + E,

where ‖E‖ ≤ τ max
{

1
α
, 1

}

. If τ < min{α, 1} then ‖E‖ < 1, I + E is nonsingular, and

1

‖(FxF T
x )−1‖ ≥ 1 − τ max

{

1

α
, 1

}

.

4. Newton-GMRES and Eigenvalue Clustering. This section discusses the perfor-
mance of the inner GMRES iteration in the context of continuation with a Newton-GMRES
nonlinear solver. Theorem 3.2 gives conditions under which the Jacobian matrix Fx of the
reformulated problem is uniformly nonsingular. This implies GMRES is a practical candi-
date for making the linear solve in Newton’s method when implementing pseudo-arclength
continuation. While the results in the previous section address conditioning, they do not
directly translate into the performance of iterative methods [7,11,21], especially in the non-
normal case. However, we can go further to see that the eigenvalue clustering properties of
the matrix Fx do not stray far from those of Gu.

Suppose the eigenvalues of Gu are nicely clustered (in the sense of [3, 14]). Even in the
singular case, this would mean that the zero eigenvalue of Gu is an “outlier”. We seek to
show that adding the row and column does not significantly increase the number of outliers,
and that we can then use the estimates in [3, 14].

One approach is to use the paradigm of [13]. The idea is that

Gu = I + K(u) + E(4.1)

where Ku is a low-rank operator, say of rank p, and E is small. We then want to write Fx

in the same way, and then compare the number of outliers by comparing the ranks of the
K-terms.

Assume that E is small enough so that the eigenvalues of I − K are “outliers” in the
sense of [3]. Since the degree of the minimal polynomial of I − K is at most p + 1, we have
a bound for the sequence of residuals {rl} of the GMRES iteration of the form
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‖rp̂+k‖ ≤ C‖E‖k‖r0‖(4.2)

where p̂ ≤ p + 1 GMRES iterations are needed to kill the contribution of the outlying
eigenvalues.

Theorem 4.1 states that that the spectral properties of Fx are similar to those of Gu.
Theorem 4.1. Let the assumptions of Theorem 3.2 hold. Assume that (4.1) holds with

rank(K(u)) = p. Then there is K(u) having rank at most p + 2 such that

‖Fx − I −K(u)‖ ≤ ‖E‖.

Proof. We write [13]

Fx = I(N+1)×(N+1) +

(

K Gλ

u̇T λ̇

)

+

(

E 0
0 0

)

.

The range of

K =

(

K Gλ

u̇T λ̇

)

is

(

Range(K)
0

)

+ span

{(

Gλ

0

)}

+ span

{(

0
1

)}

and hence the rank of K is at most p + 2.
So, while the eigenvalues may change, we have not increased the degree of the minimal

polynomial of the main term (K vs K) beyond p + 3. Hence, the methods of [3] can be
applied to obtain a bound like (4.2) with p̂ ≤ p + 3.

5. Example: Chandrasekhar H-Equation. We now present an example of a solution
path containing a simple fold. The equation of interest is called the Chandrasekhar H-
equation [4, 11,17] from radiative transfer theory:

H(µ) = 1 +
c

2
H(µ)

∫ 1

0
H(ν)

dνµ

µ + ν
.(5.1)

The goal is to compute the l1 norm of the solution to Equation (5.1) for various natural
parameter values c. That is, we compute

‖H‖1 =
∫ 1

0
H(ν, c) dν

as a function of c. Integrating (5.1) with respect to µ yields

‖H‖1 = 1 +
c

2

∫ 1

0

∫ 1

0

H(µ)H(µ)µ dµ dν

µ + ν
= 1 +

c

4
‖H‖2

1,
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and so

‖H‖1 =
1 ±

√
1 − c

c/2
.(5.2)

Equation (5.2) tells us two interesting things. First, there can be no real solutions of the
H-equation for c > 1, so there must be a singularity at c = 1, or else the implicit function
theorem would tell us that we could continue past c = 1. Secondly, the ± gives us a hint
that there may be two solutions, at least for 0 < c < 1 (and there are!).

Figure 5.1 is a plot of ‖H‖1 against c. Notice how the curve bends around when c = 1,
and how there are two solutions for each 0 < c < 1. In fact, we are witnessing a simple fold
at c = 1.

Fig. 5.1. ‖H‖1 as a function of c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

c

||H
|| 1

5.1. Simple Fold at c = 1. For the H-equation, it is possible to compute the singularity
analytically. Write the H-equation as

G(H, c)(µ) = H(µ) −
(

1 − c

2

∫ 1

0

µH(ν) dν

µ + ν

)−1

.

Taking the Fréchet derivative of F in the direction of w yields

GH(H, c)w(µ) = w(µ) −
c
2

∫ 1

0

µw(ν) dν

µ + ν
(

1 − c
2

∫ 1

0

µH(ν) dν

µ + ν

)2 = w(µ) − c

2
H(µ)2

∫ 1

0

µw(ν) dν

µ + ν
.

Let c = 1, then (5.2) implies that

∫ 1

0
H(µ) dµ = 2
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and therefore

1
2

∫ 1

0

νH(ν) dν

µ + ν
= 1

2

∫ 1

0
H(ν)

(

1 − µ

µ + ν

)

dν = 1 −
∫ 1

0

µH(ν) dν

µ + ν

= H(µ)−1.

Hence if φ(µ) = µH(µ),
GH(H, 1)φ = 0,

and we have shown directly that GH is singular at c = 1.
One can apply Perron-Frobenius theory [8, 16] to show that the null space of GH has

dimension one, and hence is spanned by φ. The singularity at c = 1 is a simple fold because

Gc(H, 1)(µ) = −H2(µ)
1

2

µH(ν) dν

µ + ν
= H2(µ)(H−1(µ) − 1)

is not in the range of GH . To see this note that

Gc(H, 1)(µ) = H2(µ)(H−1(µ) − 1) ≤ 0

and vanishes only at µ = 0. The null space of GT
H is the span of H−1, which is strictly

positive. Hence Gc is not orthogonal to the null space of GT
H .

One can also show that GH is nonsingular for all c 6= 1 by an argument even more
tedious than the one above [10].

5.2. Smallest Singular Values. As a demonstration of the result in § 3, we calculate
the smallest singular value of the Jacobian matrix associated with the augmented system for
the H-equation with each continuation iteration. In the language of § 3, we find σmin(F(H,c))

for various c where F(H,c) denotes the Jacobian of

(

G(H, c)
N (H, c, s)

)

. Figure 5.2 shows that the

smallest singular value of F(H,c) for each c stays away from zero keeping F(H,c) nonsingular,
even at the simple fold (c = 1). The pseudo-arclength code used here uses a direct LU
factorization of the Jacobian for the linear solve in Newton’s method. The step in arclength
is fixed at ds = .5, and we use a a secant predictor [9]. The integral is discretized with the
composite midpoint rule and 200 nodes. The singular values are calculated using Matlab’s
svd command.

5.3. Computation with H-equation. The consequences of the remarks in § 4 are
that for a problem like the H-equation, which is a nonlinear compact fixed point problem,
the number of GMRES iterations per Newton step should be bounded. One must take this
expectation with a grain of salt because as one moves along the path, the norm of the solution
increases, and so the number of outliers may increase slowly. The observations we present
illustrate this.

We use a Newton-GMRES version of pseudo-arclength continuation [5], fixing the step
in arclength to ds = .02, using a secant predictor [9], and beginning the continuation at
c = 0, where the H = 1 is the solution. The vector with coordinates all equal to one is



12 DICKSON et al

Fig. 5.2. σmin(F(H,c)) as a function of c
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Fig. 5.3. Krylov’s per Newton
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the solution of the discrete problem as well. We discretize the integral with the composite
midpoint rule using 400 nodes.

In Figure 5.3 we plot the average number of GMRES iterations per Newton iteration as
a function of c. As one moves further on the path, the predictor becomes less effective, and
the number of Newton iterations increase. Moreover, the norm of the solution also increases
adding roughly one to the number of Krylov’s per Newton.
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