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1. Introduction In this paper we consider the solution schemes for the following unconstrained
optimization problem
Jnin f(z) (1)
by using the so-called trajectory method or continuous method (see [@], [I11, [12], [, [23], [B0], [36] and
the references therein). Different from the conventional optimization methods, these methods adopt some
kind of differential equations to define the trajectory of variable x in terms of a parameter t. By tracing
this trajectory, the stationary points satisfying V f(x) = 0, or hopefully, the local minima of f(z) can be
located. To be more precise, let x(t) for t € T C R, be the solution of the following initial value problem:

dx

{ de = h(z), t>to @)
I(to) = 2o,

where h : U C R™ — R"™, and T denotes the maximal interval of existence. The curve in R", {z|z =

x(t), t € T}, is said to be the trajectory of the ordinary differential equation (ODE) @). Without
confusion, in order to simplify the following presentation, we also call z(t) the trajectory of ().

Obviously, the simplest trajectory is the one defined by the ordinary differential equation with h(z) =
-V f(z), ie.
{ l,ij_f = -Vf(z), (3)
x(to) = X,
which goes back to A. Cauchy and was proposed to solve some optimization problems in [9]. This ode
system has been studied extensively in [1], [2], [B], [I6], and [35].

Another natural trajectory is generated by the continuous Newton’s direction given by

{ %= —(Vf@)TV@), @
,T(to) = X0.
However, the singularity of the Hessian matrix V2f(z) is the major obstacle for this method. In [4],
Branin considered the following corresponding form
d
V2 () g =

o = FVS (z), (5)
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and to change the sign of () whenever the trajectory x(t) generated encounters a change in sign of the
determinant of V2 f(x(t)) or arrives at a solution point of V f(x) = 0 for finding multiple local minima.
Moreover, Branin also suggested to employ the adjoint matrix, say A(z), of V2f(z(t)) to get around the
singularity, and then replace (@) with

dx

Y AV, (©
which is now well-defined in R™. However, the consequence of adopting (f), the troublesome extraneous
stationary points (or extraneous singular points, [H]) defined by {2|A(2)Vf(Z) = 0, Vf(&) # 0} are
induced (see [I9] and [20] for the structure of such extraneous singular points).

An analogous modification of (@) proposed by Smale ([34], 1976) is called “global Newton equation”,
and has the following form in the context of the unconstrained optimization

dx

sz(x)a =-

o(@)Vf(z), (7)
where ¢(z) is a real function suggested specifically to satisfy the following condition

sign(¢(x)) = sign(det(V? f(z))),
and the simple choice of ¢(z) = det(V?f(x)) leads to the equation (@) immediately.

Additional research on the extended continuous Newton methods has been carried out. For example,
Diener et al. developed the so-called “Newton-leaves” and attempted to connect several or all of the
stationary points of f(z) in a single connected trajectory. For more details, readers can refer to [I1], [T2],
3.

In this paper, we propose a continuous Newton-type method (in the form of an ordinary differential
equation), which combines the negative gradient and Newton’s direction, and is well-defined in R™. It is
shown that our method gets around the singularities of V2 f(x) and converges globally to a connected
regular stationary points (points satisfying V f(x) = 0) subset for a general function f(z), and converges
globally to a regular stationary point for a real analytic function] f(z). Moreover, the trajectory defined
by the proposed ordinary differential equation moves strictly downhill (meaning that the value of f(z(t))
is strictly decreasing as t increases); and for some convex function f(x), it becomes the exact Newton
trajectory of @), and therefore, the fast convergence can be achieved.

The rest of this paper is organized as follows. In the next section, the ordinary differential equation
corresponding to our continuous Newton-type method is established and the existence and the uniqueness
of the trajectory are verified. The convergence analysis of this trajectory is addressed in Section Bl A
powerful numerical solver for some continuous models is examed for our new continuous Newton-type
method in Section @ The encouraging numerical results on a set of standard test problems are presented
in Section @l Some concluding remarks are drawn in Section B

2. A globally convergent continuous Newton-type method First, let’s state some assumptions
on the problem that we are interested in. Let

L={zeR"|f(x) < fzo)}
be the level set of f(z), and Ly(,,) denote the connected subset of L that contains the point z.
Assumptions:

(a) V2f(z) is locally Lipschitz continuous in R™.
(b) f(z) is bounded from below by f* > —oc.
(c) For any 9 € R", Ly(y,) is bounded.

LA real function is said to be analytic if it possesses derivatives of all orders and agrees with its Taylor series in the
neighborhood of every point.
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It is clear that Assumption (c) is much weaker than the condition that the level set L = {z|f(z) <
f(zo)} is bounded. For example, if f(z) =sinz, x € R, then the level set L = {z|f(z) =sinz < ‘/75} is
unbounded, but Ly, is bounded for any given x. From Assumption (c), we know that the set Ly,
is compact, and furthermore, for any xo € R", the set Sy(,,) defined by

Sf(wo) = 5N Ly (o), (8)
is compact too, where S is the the stationary points set given by
S = A{z|Vf(z) =0} 9)

Consider the following continuous Newton-type differential equation,

{ sz—f = d(‘r)v (10)

x(to) = wo,
where
—(V2f(2))~ 'V f(z), if Amin(7) > 62,
d(z) =< —a(x)(V2f(2)) 'V f(z) = B@)Vf(x), if 01 < Amin(z) < 02, (11)
—Vf(l'), if )\min(ac) < 61,

where Amin(7) represents the smallest eigenvalue of V2f(z), 62 > 6; > 0 are two predefined positive
constants, and «(z), f(x) are set as

o )\min(x) - 51
az) = RS S (12)
Blz) = 1—ax)= 52%_‘“6“1@ (13)

The smallest eigenvalue of V2f(x), Amin(z), can be easily estimated from the modified Cholesky
factorization in [31]. However, for convenience, we still use the MATLAB function eig.m to compute the
Amin(2) in our numerical test in Section 4.

For simplicity of our presentation, we will use dy(z) and dg(z) to denote Newton’s direction
—(V2f(2)) 'V f(z) and the negative gradient —V f(x) at point z, respectively. A first observation
is that when V2f(z) is strictly positive and d > d; > 0 are chosen properly, the trajectory generated is
exactly the continuous Newton trajectory. Furthermore, ([[1l) is well-defined in R™, and the existence and
the uniqueness of the solution to the initial value problem () can also be guaranteed as long as d(x) is
proved to be locally Lipschitz continuous in R™. In order to get this result, we first show that Apin(x) is
locally Lipschitz continuous in R™, which is a direct result of the Wielandt-Hoffman Theorem.

LEMMA 2.1 ([T3], p. 396) If A and A+ E are n-by-n symmetric matrices, then
A(A+E) = M(A) < [|Ell2, k=1,---,m,
where \i.(A) designates the kth largest eigenvalue of A.

Since V2 f(x) is locally Lipschitz continuous by Assumption (a), the previous lemma immediately leads
to the fact that Amin(2) is locally Lipschitz continuous in R™. Moreover, from the result in [28] (Section
2.3.3, p. 46), we know that for any Z, if Amin(Z) > 0, there exist a v > 0 and a neighborhood N, (Z) of Z
such that Vo € N.(z), V2 f(z) is invertible and |(V2f(z))~!|]2 < 7. Hence,

(V@)™ = (V@) e = (V@) V() = VAF @)UV f ()l
< AVEF@E) 2 IV (@) = V2 ()2,
which implies that (V2 f(x))~! is Lipschitz continuous at Z too.
THEOREM 2.1 Suppose that f(z) satisfies Assumptions (a), (b) and (c). Then for any z(ty) = xo € R™,

there exists a unique solution x(t) to {I), and the maximal interval of existence of the solution can be
extended to [0, +00).
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PROOF. For any Z € R™ with Apin(Z) # 1 or da, the locally Lipschitz continuity of d(x) at T can
be immediately obtained from the previous discussion. If Ay (Z) = 61, then «(Z) = 0, B(Z) = 1 and
d(z) = =V f(z). For any = in some neighborhood of Z with Apyin(x) < 1,

ld(z) = d(@)|2 = Vf(2) = VI (@)ll2 < Laflz — 2.

where L; > 0 is the corresponding Lipschitz constant. For any x in some neighborhood of Z with
Amin (%) > 01, since 0 < a(x), B(x) < 1, and Apin(x), dy(z) and dg(z) are locally Lipschitz continuous
at z, we have

[d(z) —d(@)|l2 = |a(z)dn(z) + B(2)dc(z) — da(T)|2
< ldn(@)|l2 - a(z) + a(z)|ldy (z) — dn (Z)]|2
+lda(@)l2 - [1 = B(x)] + B(x)||da(x) — da ()2
< 5o ! HdN(f)llz Pmin(®) = Amin (Z)] + a(z)[|[dn (2) — dNn (2) ]2
+52 HdG( M2 - Pmin () = Amin(2)] + B(2)||de () — da(T)]|2

< Laflr - fC||2=

where Lo > 0 is the corresponding Lipschitz constant. Similarly, d(x) is also locally Lipschitz continuous
at Z when Apin(Z) = d2; and therefore, d(x) is locally Lipschitz continuous in R™, from which the existence
and the uniqueness of the solution of ([[{) are obtained by the Picard-Lindelof theorem.

Furthermore, note that

- —d]\[(:zj)Tdc;({;j)7 if Apin(x) > 2,
YO _{ —af@)an(@)do(z) — B)da(@). i 51 < Amin(x) < b (14
—Hdg(.%')H%, if )‘min(‘r) < 617

which implies that (d(t)) < 0 (since dXdg > 0), and f(z(t)) is nonincreasing along the trajectory z(t)
for t > to. Therefore, it follows that the solution x(t) will always stay in the compact set S (,,), and the
maximal interval of existence of the solution can be extended to [0, 4+00).

We now provide a general result which shows that the trajectory x(t) of ([[) will never reach set Sy,
at finite time ¢ if V f(z(t9)) # 0.

THEOREM 2.2 Suppose h : U C R™ — R"™ is locally Lipschitz continuous on an open set U. Then for any
xo = x(to) € U with h(xg) # 0, the solution to the initial problem (@) satisfies h(x(t)) # 0 for any t € T,
where T' denotes the mazimal interval of existence of x(t).

PROOF. Suppose by contradiction that ¢ € T is the smallest value satisfying h(z(t)) = h(Z) = 0 in
the right maximal interval of existence of x(t). Since h(x) is locally Lipschitz continuous at z = x(t),
there exist a neighborhood N, (Z) of Z and L(Z) > 0 such that

1h(z) = h(Z)[l2 < L(Z)||x — Zll2, V€ N-(2).
Clearly, L(z) > 0; otherwise, ¢ must not be the smallest value satisfying h(z(t)) = 0.

Note that z(t) is continuous, there exists an n > 0 such that 0 < L(Z)n < 1, n < t — g, and
x(t) € N, (z) for all t € [t — n,t]. Since for any ¢ € [t — n, 1], it holds that

1P(2(t)ll2 = [A(x(t) = h(Z)]2 < L(Z)[|2(t) - Z[l2 < L(Z)n - JJnax [P (2(5))]l2-

This together with 0 < L(Z)n < 1 implies
max h(e(s)z =0

seft

which contradicts the fact that ¢ is the smallest satisfying h(x(t)) = 0, and thereby, h(x(t)) # 0 for any
telT. O
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The result of Theorem 2 is the extension of Theorem 2(iii) in [24] which obtained the same result for
the gradient system. ([dl) together with the previous theorem reveals that f(xz(t)) is strictly decreasing
along the trajectory as t increases whenever V f(xg) # 0. This property also guarantees that there is no
periodic solution for ([I0).

THEOREM 2.3 There is no periodic solution to {Il) for any x(to) = xo € R™ with V f(zo) # 0.

PROOF. Suppose there is a periodic solution z(t) with its minimal period 7' > 0, then f(z(t + 1)) =
f(z(t)), for t > to, which just contradicts the fact that w < 0 for any ¢ > to (by Theorem EZ2). This
completes the proof. O

3. Convergence analysis Since the maximal interval of existence of the solution to [I) can be
extended to [tg, +00), we then can apply some results of the dynamical system to develop the convergence
analysis.

DEFINITION 3.1 A point p € U is an w-limit point of the trajectory x(t) of dynamical system ‘2—? = h(x)
with x(tg) = xo if there is a sequence t,, — +0o such that

lim x(t,) =p.

n—-+4oo

The set of all w-limit points of a trajectory x(t) is called the w-limit set of x(t) and it is denoted by Qy,.

LEMMA 3.1 (see [29]) The w-limit set of a trajectory x(t) of @) is closed in U and if x(t) is contained
in a compact subset of R™, then §y, is non-empty, connected and compact.

REMARK 3.1 Let Q,, represent the w-limit set of trajectory of {I0). As indicated by [I4), Qo € Lf(a0);
and moreover, from Definition[Zl, we can say that the trajectory x(t) converges to the set Q,, ast — 400
in the sense that for any € > 0, there exists a te > to such that ¥Vt > te, it follows that

A (t), ay) = it [alt) = ill2 < e

Qyu, 15 also said to be attracting for the trajectory x(t). If, in addition, Q,, contains only one point,
“attracting” equivalently means convergence to a single point.

The following theorem gives the convergence results for a general function f(z).

THEOREM 3.1 Suppose f(z) satisfy Assumptions (a), (b), and (c), and let x(t) be the trajectory of (1)
with x(ty) = xo € R™. Then there exists some constant f such that

Qay {2l f(2) = [} 0 Spiao); (15)
and x(t) converges to some connected subset of S¢(y,) ast — +00, where S¢(y,) s defined by (@).

PROOF. Since V f(xo) = 0 is the trivial case in which the unique trajectory becomes x(t) = xq, t > to
(due to uniqueness), we just consider V f(xg) # 0.

From () and Theorem[Z2 it follows that f(z(t)) is strictly decreasing as ¢ increases, but still bounded
below by Assumption (b), which consequently implies that there exists a constant, say f, so that

Jim f(a(t) = ]
As a result, for any 7 € Q,,, there exists a sequence {t;};>° such that t; — +oo, x(t;) — Z and

f(z(t;)) — f(z) = f as i — +o0o, which implies Q,, C {z|f(z) = f} directly.

Furthermore, the LaSalle invariant set theorem (Theorem 3.4 in [33]) says that for any Z € ,,, we
have 42 — Vf(z)Td(z) = 0, which is true only when Vf(z) = 0 by ([@). Therefore, consequently,

dt i
from Lemma BTl Remark BTland 2(t) € Ly(y,) for t > to, we conclude Q,, C {z|f(x) = f} N Sf(,), and
complete the proof. O

Special cases of the set ),, below directly lead to the convergence to a stationary point, and the proof
is obvious.
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COROLLARY 3.1 Under the conditions of Theorem [Z1l, suppose that x(t) is the trajectory of () with
x(to) = xo € R". If each point in Sy(y,) is isolated from one another, then x(t) converges to a stationary
point as t — 4o00; and therefore, if there is an T € §;, being a strictly local minimizer of f(x), then
z(t) = T as t — +oo.

However, in general, it should be pointed out that converging to a (single) stationary point may not
be obtained, because it is known that the trajectory of ([Bl) will not necessarily converge to a single point
(see [IT], Prop. C.12.1; and see [I] for the counterexample and more general version). By only endowing
f(z) to be real analytic additionally, however, the single limit-point convergence is achievable. The proof
for this is based on Corollary Bl and similar to the proof of Theorem 2.2 in [1].

THEOREM 3.2 Suppose that f(x) is a real analytic function satisfying Assumption (a), (b), and (c).
Then the trajectory x(t) of ([Il) converges to a (single) stationary point of f(x) as t — +oo for any
LL‘(tQ) =x9 € R".

PROOF. We just need to consider the case V f(zo) # 0. Let £, be the w-limit set of x(¢). If 3 an
T € Qy, such that Amin(Z) > 0, then Z must be a strictly local minimizer of f(z) and Corollary Bl
completes the proof already; otherwise, VZ € Qu,, Amin(Z) < 0. We prove next that z is the unique point
in £, and therefore lim;_, 4o z(t) = Z.

Obviously, there exists a neighborhood N, (Z) of Z such that Yz € N, (Z), Amin(z) < 61 for any
predefined ¢; > 0 in (). Also, since f(z) is real analytic, the following Lojasiewicz gradient inequality
(see [25]) holds in a neighborhood N, (Z) of Z,

IVF(@)ll2 = c|f(z) = f(2)]7, Vae N, (2),

for some constants ¢ > 0 and o € [0,1). We then can assume that for any sufficiently small € > 0, the
Lojasiewicz gradient inequality and Amin(x) < 61 hold in the neighborhood N, (Z).

From TheoremBdland V f (o) # 0, it follows that f(z(t)) > f(Z) for t > t¢. Then for any x(t) € N(T),
we have
df (z(t)) — f(2)]
dt

dx(t)
dt

=~V @)l < —clf(z(t)) = f(@)7 -

”27

or equivalently,

dif () — f@)I'7 _ i da(t)
dt - dt

where ¢; = (¢(1 —0))™! >0, ¢>0and o € [0,1).

1l 2, (16)

Note that Z is an accumulation point and f(z(t)) — f(Z) as ¢ — +o0, there must exist some t; > ¢
such that the following two inequalities hold simultaneously,

z(t1) —Z[2 <
alf(z(t)) - f@]7 <

Suppose z(t) will leave N(Z) after t1, and let ¢t be the smallest such that ||z(t2) — Z||2 = €, then
x(t) € Ne(Z) for all t € (t1,12). From ([[E) and the decreasing property of f(z(t)), we get

NS e NN e

0< /t I Ly l2dt < er[f(x(tr)) = F@)' 77 = aalf (2(t2)) = f@)]' 7

Cdt
< alfz(t) — f(@)]° < %
Therefore,
le(ts) —Zlla < ||l2(ta) — x(t1)]2 + l2(t) — 2]
< /judfl—i’”||2>dt+|x<tl>_x|2<ﬁ
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This contradiction implies that Ve > 0 arbitrarily small, 3 a ¢; such that |z(t) — Z||2 < €, V& > t1, this is
just the definition of the convergence of z(t) to T as t — +oc. O

It should be mentioned that, to obtain the single-limit convergence, we do not impose the angle
condition
a dt dt
on Theorem as Theorem 2.2 in [I] does, this is due to the special structure of ([[). Moreover, the
converging point of z(t) is also a regular stationary point, which is stronger than that of Theorem 2.2 in

M. In general, Theorem 2.2 of [1] can still be strengthened to guarantee the convergence to a regular
stationary point of a real analytic function ¢(z), and an analogous version is presented as follows.

< =OIVF @)l -

ll2, 6 >0, (17)

THEOREM 3.3 Let f(z) be a real analytic function and let x(t) be a C' curve in R™ with dfl(tt) = h(z).
Assume that there exist a 0 > 0 and a real n such that for t > n, x(t) satisfies the angle condition (I7)
and

df (z)

(= =0 = [h(z) =0 = [Vf(z) =0]. (18)

Then, ast — +oo, either ||z(t)||2 — oo or there exists x* € R™ such that ||z(t)||2 — x* with V f(z*) = 0.

PROOF. According to Theorem 2.2 in [I], we just need to verify V f(z*) = 0. Lemma 2 in [6] (p. 429)
ensures h(z*) = 0 and the condition ([[8) leads to the result. O

4. Pseudo-transient continuation Pseudo-transient continuation (¥tc ) is one way to implement
the method (). This method was originally designed as a method for finding steady-state solutions to
time-dependent differential equations without computing a fully time-accurate solution. The approach
can also be adapted to optimization problems. We refer to [22] |, [T4] [T8, [[0] for the details of the theory
and some applications. In this section we will only summarize the method. Some numerical results of
Wte will be reported in Section Bl

In the context of optimization, one would integrate ([Bl) numerically, managing the time step in a way
that, while maintaining stability, would increase as rapidly as possible in order to make the transition to
Newton’s method near the solution. One way to do this is the iteration

Tpi1 = xn — (0,1 + H(wn)) h(wn), (19)

where H(x) is the model Hessian or H(z) = h/(x). One common way to manage the “time step” &, is
“Switched Evolution Relaxation” (SER) [27]

Ont1 = OnllA(zn) I/ [1(znta)l (20)

SER is supported by theory, and it is this approach we use in this section.

One thing we should mention is that for the sequence {z,} generated from ¥tc , the corresponding
objective function value sequence {f(z,)} may not be monotonically decreasing. This is different from
the continuous method where W <0.

5. Computational experiments This section deals with the numerical test of our continuous
Newton-type method () in comparing with the continuous steepest descent method ) by using the
Matlab ODE solvers. In addition, we also report the numerical results of Utc in solving the related ODEs.
For this purpose, the set of the 17 standard test functions (except for the last Chebyquad function) for
unconstrained minimization from [26] is used and tested with their dimensions ranging from 2 to 400.
For each test function, we use the same initial value xg as in [26]. The test problems are summarized in
the following table.
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Table 1. Test Problems

No.

Function name

n m

P1 Helical valley function 3 3

P2 Biggs EXP6 function 6 m>n
P3 Gaussian function 3 15

P4 Powell badly scaled function 2 2

P5 Box three — dimensional function 3 m>n
P6 Variably dimensioned function n m=mn-+2
P7 Watson function 2<n<31 31

P8 Penalty function I n m=mn+1
P9 Penalty function I1 n m = 2n
P10 Brown badly scaled function 2 3
P11 Brwon and Dennis function 4 m
P12 Gulf research and development function 3 n < m < 100
P13 Trigonometric function n m=n
P14 Extended Rosenbrock function n(even) m=n
P15 Extended Powell singular function n(multiple of 4) m=n
P16 Beale function 2 3
P17 Wood function 4 6

5.1 Matlab platform In this subsection, all computation is performed on Matlab platform. Before
presenting our numerical results, several points should be clarified. First, the minimum eigenvalue routine
used in our tests is directly based on the MATLAB code eig.m, although the attractive modified Cholesky
factorization in [31] can be used. Second, for each test function, the explicit expression of V2f(z) is
employed. Third, because of Theorem Bl we do not have to require, as Theorem states, that the
test functions are real analytic. Finally, we let 6o = 10008, in () and fix §; = 6 = 10~?, but if this
fails for some problems, §; = 6(!) = 10~* would be used.

All our tests are performed on a PC with Intel(R) Pentium(R)4 Processor at 3.20GHz. The nonstiff
ODE solver ODE113 is used with the settings RelTol = 10~%, AbsTol = 10~% and ||WHOO <e=
10~% being the stopping criterion. The CPU times to obtain the acceptable solutions are summarized in
Table 2 where ‘x’ denotes that the method cannot stop within 1000 seconds of the CPU time; and the
CPU times of the continuous steepest descent method (Bl and our continuous Newton-type method ([T
are denoted by CPUg and CPUy, respectively. In addition, we also list the smallest eigenvalue (labeled
as Af,,) of the Hessian at the computed point z* for supporting the validity of our choices of 1,2 and
for detecting whether the computed point is a local minimizer. f¢& and f represent the final computed
objective function values from (@) and ([I0), respectively.
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Table 2. Comparison of [@) and (I) on ODE113

No. n m CPUg(s) CPUN (s) Ain 1& I

P1 3 3 2.5781 0.5313 1.4328D — 00 6.4722D — 13 | 7.9391D — 13
P2 6 6 128.9375 165.2656 —4.5330D — 05 | 3.5509D — 05 | 3.5509D — 05
P3 3 15 0.0938 0.0469 1.3966D — 01 1.1283D — 08 1.1282D — 08
P4 2 2 * 604.8594 1.0059D — 06 * 4.1537D — 10
P5 3 10 18.2656 7.3750(5(1)) 9.1158D — 04 5.6492D — 10 | 5.6174D — 12
P5 3 20 15.3438 7.2031(5(1)) 1.6145D — 03 3.1329D — 10 | 2.8701D — 12
P6 5 7 0.1563 0.0625 2.0000D — 00 1.1589D — 15 | 4.0253D — 11
P6 10 12 0.1406 0.0781 2.0000D — 00 1.9155D — 15 | 5.8237D — 10
P6 20 22 0.1719 0.1250 2.0000D — 00 4.6993D — 16 1.9398D — 08
P6 30 32 0.1875 0.4375 2.0000D — 00 1.7847D — 16 | 6.3986D — 08
P7 2 31 0.1250 0.0781 2.3977D + 01 5.4661D — 01 5.4661D — 01
P7 6 31 * 1.6250 2.8101D — 03 * 2.2877D — 03
P7 8 31 * 4.8750 7.5430D — 06 * 1.8162D — 05
P8 4 5 20.9688 0.1250 7.9998D — 05 2.2514D — 05 | 2.2500D — 05
P8 10 11 15.0313 0.1719 1.2648D — 04 7.0893D — 05 | 7.0877D — 05
P8 20 21 11.3906 0.1875 1.7887D — 04 1.5780D — 04 | 1.5778D — 04
P8 50 51 9.1563 0.4531 2.8281D — 04 4.3181D — 04 | 4.3179D — 04
P8 100 101 8.7031 1.4531 3.9993D — 04 9.0253D — 04 | 9.0249D — 04
P8 200 | 201 9.7031 6.5781 5.6554D — 04 1.8611D — 03 1.8611D — 03
P9 4 8 0.1719 0.4844 2.9693D — 06 9.4914D — 06 | 9.3763D — 06
P9 10 20 773.6875 0.4531 1.8842D — 05 2.9369D — 04 | 2.9366D — 04
P9 20 40 * 0.3281 1.3795D — 04 * 6.3897D — 03
P9 50 100 188.5469 0.5313 1.6645D — 02 4.2961D — 00 | 4.2961D — 00
P9 100 | 200 2.5000 1.5156 2.2137D — 01 9.7096D + 04 | 9.7096D + 04
P9 200 | 400 14.3281 5.7188 2.6871D + 02 4.7116D + 13 | 4.7116D + 13
P10 2 3 * 5.2188 2.0000D — 00 * 2.5763D — 15
P11 4 10 0.8750 0.3125 4.7720D — 00 1.4432D — 00 | 1.4432D — 00
P11 4 20 4.0625 0.1563 1.5158D + 03 8.5822D + 04 | 8.5822D + 04
P11 4 50 * 0.3594 1.4581D + 09 * 2.6684D + 16
P11 4 100 * 0.6406 1.5186D + 18 * 1.5087D + 34
P12 3 3 * 0.3438 1.9330D — 06 * 3.2312D — 07
P13 5 5 0.4063 0.5156 1.5045D — 01 4.3481D — 11 1.5018D — 11
P13 10 10 0.2500 0.6875 9.8024D — 01 2.7951D — 05 | 2.7951D — 05
P14 2 2 10.5625 0.1094 3.9936D — 01 3.9442D — 12 2.9867D — 13
P14 10 10 11.2031 0.1250 3.9936D — 01 1.9721D — 11 1.4933D — 12
P14 20 20 12.2500 0.2500 3.9936D — 01 3.9442D — 11 2.9867D — 12
P14 50 50 15.4063 0.9844 3.9936D — 01 9.8606D — 11 7.4667D — 12
P14 | 100 100 28.2813 4.5938 3.9936D — 01 1.9721D — 10 | 1.4933D — 11
P14 | 200 | 200 79.7500 27.0313 3.9936D — 01 3.9442D — 10 | 2.9867D — 11
P14 | 400 | 400 340.0625 212.2969 3.9936D — 01 7.8885D — 10 | 5.9733D — 11
P15 4 4 234.0938 3.7656 3.2196D — 08 1.4476D — 09 | 3.1023D — 15
P15 20 20 400.0781 5.3281 3.2596D — 08 7.2380D — 09 1.5628D — 14
P15 40 40 606.6875 10.8438 3.2228D — 08 1.4476D — 08 | 2.4472D — 14
P15 100 100 * 46.2813 3.2281D — 08 * 6.3657D — 14
P15 | 200 | 200 * 198.1563 3.2127D — 08 * 1.1339D — 13
P16 2 3 0.6719 0.3281 3.0146D — 01 2.2351D — 12 1.0640D — 13
P17 4 6 23.9219 6.7031(5(1)) 7.1957D — 01 1.6888D — 12 | 5.4878D — 13

Except for the second problem P2, where the computed solution z* is a saddle point, the rest computed
points are all local minima. These numerical results clearly demonstrate that our continuous Newton-type
method () is much more efficient and reliable compared with the gradient method (@), and converges

globally to the regular stationary point(s).

5.2 Wtc approach As we mentioned in Section Hl Wtc is a very fast solver for ). Even though the
points generated by Wtc would not have a monotonically decreasing objective function value in general,
yet its fast convergence would always provide an attractive and competitive approach for any dynamical
system resulted from the optimization problem. In our ¥tc implementation for (@), we set tol=[1e-9,1e-8],
maxit=5000, mode=1, and qflag=0 (for more details, please see [22]). The following two tables summarize
the numerical results, where Iter represents the number of iterations, f* represents the final objective
function value, and ¢ represents the final value of d,,. In addition, in the following four tables, ’0*’

denotes the 0 second return of function ’cputime’ in MATLAB.




Zhang, Kelley, and Liao: A continuous Newton-type method for unconstrained optimization
Mathematics of Operations Research xx(x), pp. xxx—xxx, ©200x INFORMS

Table 3. Numerical results of Wtc for {@) with dt=1e-1

No.| n | m | Iter | CPU(s) fr %

P1 3 3 41 0.0313 | 5.8305e — 013 | 1.9527e — 004
P2 6 6 78 0.1719 | 3.5505e — 005 | 9.7840e — 006
P3 3 15 8 0.0781 | 1.1279e — 008 | 1.0285e — 004
P4 2 2 42 0.0781 | 1.3039¢ — 008 | 8.5200e — 002
P5 3 10 46 0.0313 | 8.2370e — 019 | 2.2327e — 007
P5 3 20 | 141 0.0781 | 3.6143e — 014 | 1.0918e — 006
P6 5 7 11 0" 9.8752e — 011 | 5.1768e — 005
P6 | 10 | 12 14 0.0313 | 1.0315e — 009 | 1.7620e — 006
P6 | 20 | 22 16 0" 1.9000e — 003 | 4.6426e — 007
P6 | 30 | 32 17 0.0313 | 5.5257e — 002 | 1.3659e — 007
P7 2 31 6 0" 5.4661e — 001 | 8.5340e — 006
pP7 6 31 16 0.1406 | 2.3000e — 003 | 1.7110e — 006
P7 8 31 18 0.3125 | 1.8162e — 005 | 3.0671e — 007
pP7 9 31 17 0.4063 | 1.4375e — 006 | 1.0825e — 007
P8 4 5 21 0.0313 | 2.2501e — 005 | 2.2898e — 006
P8 | 10 | 11 13 0" 7.4403e — 005 | 2.3594e — 006
P8 | 20 | 21 15 0.0313 | 1.6347e — 004 | 4.3232¢ — 007
P8 | 50 | 51 16 0.0313 | 1.7000e — 002 | 3.5908e — 007
P8 | 100|101 | 17 0.0938 | 4.5525e¢ — 001 | 1.1564e — 007

P8 | 200|201 | 17 0.1563 | 3.7352e + 001 | 1.1867e — 007
P9 4 8 21 0.0313 | 9.3763e — 006 | 6.5247¢ — 005
P9 | 10 | 20 32 0.0313 | 2.9367e — 004 | 2.1867e — 004
P9 | 20 | 40 32 0.1250 | 6.3897e — 003 | 8.4172e — 005
P9 | 50 | 100 | 22 0.0625 | 4.2961e — 000 | 2.6271e — 006
P9 | 100|200 | 19 0.1094 | 9.7096e + 004 | 1.8427e — 007

P9 | 200|400 | 10 0.1406 | 4.7116e + 013 | 3.8687¢ — 005
P10 | 2 3 17 0" 1.3580e — 014 | 1.5268e — 006
P11| 4 10 85 0.0625 | 1.4433e — 000 | 1.0524e — 007
P11 | 4 20 17 0.0313 | 8.5822e + 004 | 1.4144e — 007
P11| 4 50 12 0.0313 | 2.6684e + 016 | 1.5367e¢ — 007
P11| 4 |100 | 12 0.0313 | 1.5087e + 034 | 3.3363e — 005
P12| 3 3 4 0.0313 | 1.4000e — 003 | 1.0000e — 005
P13 | 5 5 538 | 0.2188 | 4.0773e — 017 | 2.3249e — 007
P13 | 10 | 10 | 664 | 0.3906 |2.7951e — 005 | 3.2628e — 007
P14 | 2 2 16 0" 4.1877e — 015 | 2.3416e — 004
P14| 10 | 10 16 0" 2.0939¢ — 014 | 2.3416e — 004
P14 | 20 | 20 16 0" 4.1877e — 014 | 2.3416e — 004
P14 | 50 | 50 16 0.0313 | 1.0469e — 013 | 2.3416e — 004

P14|100 | 100 | 16 | 0.0938 |2.0939¢ — 013 | 2.3416e — 004
P14|200 | 200 | 16 | 0.3438 |4.1877e — 013 | 2.3416e — 004
P14 | 400 [ 400 | 16 | 1.1719 | 8.3754e — 013 | 2.3416e — 004
P15 4 | 4 | 18 0* 2.0684e — 009 | 1.4122e — 007
Pi5| 20 | 20 | 18 0* 1.0342e — 008 | 1.4122¢ — 007
P15| 40 | 40 | 17 | 0.0313 |2.0684e — 008 | 1.4122¢ — 007
P15(100 | 100 | 17 | 0.0469 |5.1711e — 008 | 1.4122¢ — 007
P15|200 | 200 | 17 | 0.1094 |1.0342e — 007 | 1.4122¢ — 007
Pi16| 2 | 3 | fail| fail fail fail

P17| 4 | 6 | 61 | 0.0313 |3.5720e — 019 | 2.0420e — 007
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Table 4. Numerical results of Wtc for @) with dt=1e-2

No.| n | m | Iter | CPU(s) fr %

P1 3 3 76 0.0156 | 2.4296D — 12 | 2.0169e — 003
P2 6 6 489 | 0.5938 | 3.5505D — 05 | 1.1425e¢ — 005
P3 3 15 24 0" 1.1279D — 08 | 5.7233e — 004
P4 2 2 37 0.0313 | 3.3789D — 07 | 1.8238e — 000
P5 3 10 32 0" 4.0396D — 13 | 1.4709e — 005
P5 3 20 22 0.0313 | 1.3365D — 17 | 1.3774e — 006
P6 5 7 11 0~ 1.1030D — 10 | 5.2633e — 004
P6 | 10 | 12 14 0" 1.0326D — 09 | 1.7623e — 005
P6 | 20 | 22 16 0.0313 | 1.8704D — 03 | 4.6426e — 006
P6 | 30 | 32 17 0" 5.5257D — 02 | 1.3659e — 006
P7 2 31 9 0~ 5.4661D — 01 | 4.3214e — 005
P7 6 31 22 0.1875 | 2.2877D — 03 | 3.9246e — 006
P7 8 31 25 0.4219 | 1.8185D — 05 | 2.8944e — 006
P7 9 31 21 0.5000 | 2.7859D — 06 | 1.2264e — 006
P8 4 5 20 0.0312 | 2.2501D — 05 | 1.3018e — 005
P8 | 10 | 11 13 0" 7.4418D — 05 | 2.9452e — 005
P8 20 | 21 15 0.0313 | 1.6349D — 04 | 4.4251e — 006
P8 | 50 | 51 16 0" 1.7070D — 02 | 3.5939e — 006
P8 | 100 | 101 | 17 0.4375 | 4.5525D — 01 | 1.1565e¢ — 006
P8 | 200|201 17 0.1250 | 3.7352D + 01 | 1.1867e — 006
P9 4 8 39 0.0313 | 9.3763D — 06 | 3.1829e — 004
P9 | 10 | 20 34 0.0938 | 2.9366D — 04 | 1.3461e — 004
P9 | 20 | 40 32 0.1250 | 6.3897D — 03 | 4.3641e — 004
P9 | 50 | 100 | 22 0.0625 | 4.2961D — 00 | 2.6661e — 005
P9 | 100 | 200 | 19 0.0938 | 9.7096D + 04 | 1.8365¢ — 006
P9 | 200 | 400 | 10 0.0938 | 4.7116D + 13 | 3.8783e — 004
P10 | 2 3 63 0.0313 | 4.7304D — 13 | 1.1728e — 005
P11 | 4 10 85 0.0625 | 1.4433D — 00 | 1.0518e — 006
P11 | 4 20 17 0" 8.5822D + 04 | 1.4095e — 006
P11 | 4 50 12 0.0313 | 2.6684D + 16 | 1.5367e — 006
P11| 4 |100]| 12 0.0313 | 1.5087D + 34 | 3.3363e — 004
P12| 3 3 | fail fail fail fail

P13 | 5 5 792 | 0.2656 | 4.1105D — 17 | 2.3344e — 006
P13 | 10 | 10 | 904 | 0.5938 | 2.7951D — 05 | 3.2390e — 006
P14 | 2 2 21 0" 9.4629D — 19 | 1.2025e — 004
P14 | 10 10 21 0~ 4.7314D — 18 | 1.2025e — 004
P14 20 | 20 21 0" 9.4629D — 18 | 1.2025e — 004
P14 | 50 | 50 21 0.0313 | 2.3657D — 17 | 1.2025e¢ — 004
P14 100 | 100 | 21 0.0625 | 4.7314D — 17 | 1.2025e¢ — 004
P14 200 | 200 | 21 0.3125 | 9.4629D — 17 | 1.2025e¢ — 004
P14 | 400 | 400 | 21 1.2031 | 1.8937D — 16 | 1.2025e — 004
P15 | 4 4 18 0.0313 | 2.1577D — 09 | 2.0004e — 006
P15| 20 | 20 18 0~ 1.0789D — 08 | 2.0004e — 006
P15 | 40 | 40 18 0" 2.1577D — 08 | 2.0004e — 006
P15 | 100 | 100 | 18 0.0625 | 5.3944D — 08 | 2.0004e — 006
P15 | 200 | 200 | 18 0.1406 | 1.0789D — 07 | 2.0004e — 006
P16 | 2 3 19 0~ 7.2047D — 19 | 2.7779e — 005
P17 | 4 6 48 0.0313 | 8.2639D — 16 | 1.6817e — 005

Since the ¥tc method for solving (@) already adopts the Hessian of f(z), therefore, there is no direct
application of Wtc to the dynamical system (). However, we can apply Ytc partially to solve (). Our
test for solving ([[T) is to adopt Newton’s direction if Ay, () > d2, otherwise we adopt the ¥tc direction.
The numerical results of this combined method are reported in the following 2 tables, where Iter, f*,

5% share the same meanings as Table 3 and Table 4; \* denotes the final computed Apn ().

do = l.e — 4 in .

We set
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Table 5. Numerical results of the combined method with dt = le — 1

No.| n Iter | CPU(s) fr A* %

P1 3 3 90 0.0625 | 1.0225e — 014 | 1.4328e — 000 | 1.4013e — 005
P2 6 6 78 0.1250 | 3.5505e — 005 | —4.4169e — 005 | 9.7840e — 006
P3 3 15 3 0* 1.1279e — 008 | 1.3966e — 001 | 2.6052e — 003
P4 2 2 36 0.0625 | 5.0082e — 008 | 5.7972e¢ — 005 | 7.3800e — 002
P5 3 10 45 0.0313 | 7.5602e — 002 | —5.3429e — 010 | 6.3309e — 005
P5 | 3 | 20 | fail| fail fail fail fail

P6 5 7 11 0* 9.7541e — 011 | 2.0000e — 000 | 5.1672e — 005
P6 | 10 | 12 14 0* 1.0314e — 009 | 2.0000e — 000 | 1.7620e — 006
P6 | 20 | 22 16 0.0313 | 1.9155e — 003 | 2.0000e — 000 | 4.6426e — 007
P6 | 30 | 32 17 0" 5.5257e — 002 | 2.0000e — 000 | 1.3659e — 007
P7 2 31 6 0* 5.4661e — 001 | 2.3977e + 001 | 1.7146e — 007
P7 6 31 13 0.1406 | 2.2877e — 003 | 2.8101le — 003 | 3.3248e — 007
P7 8 31 18 0.3281 | 1.8162e — 005 | 7.5430e — 006 | 3.0671e — 007
PT7 9 31 17 0.4375 | 1.4375e — 006 | 3.1599e — 007 | 1.0825e — 007
P8 4 5 17 0* 2.2513e — 005 | 1.0022e — 003 | 5.1724e — 006
P8 | 10 | 11 13 0" 7.4402e — 005 | 1.3945e¢ — 002 | 2.3004e — 006
P8 | 20 | 21 15 0* 1.6347¢ — 004 | 5.1832e — 002 | 4.3120e — 007
P8 | 50 | 51 16 0.0313 | 1.7043e — 002 | 1.5880e — 000 | 3.5905e — 007

P8 100|101 | 17 | 0.1250 | 4.5525e¢ — 001 | 6.6031le — 000 | 1.1564e — 007
P8 200|201 | 17 | 0.2813 | 3.7352e + 001 | 5.5580e + 001 | 1.1867e¢ — 007
P9 4 8 28 0" 9.3765e — 006 | 6.2659¢ — 004 | 3.9608e — 004
P9 | 10 | 20 29 0.0313 | 2.9366e — 004 | 2.1416e — 003 | 6.2639e — 005
P9 | 20 | 40 34 | 0.0625 | 6.4023e — 003 | 2.5972e — 004 | 2.0886e — 006
P9 | 50 100 | 22 0.0938 | 4.2961e — 000 | 1.7843e — 002 | 2.6228e — 006
P9 | 100|200 | 19 0.1250 | 9.7096e + 004 | 2.2412e — 001 | 1.8434e — 007

0

P9 | 200 | 400 | 10 .2188 | 4.7116e 4 013 | 2.6924e 4 002 | 3.8677e¢ — 005
P10| 2 3 5 0" 9.8341e — 010 | 2.0000e — 000 | 5.6000e — 000
P11 | 4 10 85 0.0625 | 1.4433e — 000 | 4.7750e — 000 | 1.0525e — 007
P11 | 4 20 17 0" 8.5822e + 004 | 1.5158e + 003 | 1.4150e — 007
P11 | 4 50 12 0* 2.6684e + 016 | 1.4581e + 009 | 1.5367e — 007
P11| 4 |100| 12 0.0313 | 1.5087e + 034 | 1.5197e + 018 | 3.3363e — 005
P12 | 3 3 2 0* 1.4000e — 003 | —9.4304e — 000 | 1.0000e + 001
P13| 5 5 653 | 0.2656 | 5.0235e — 017 | 2.3764e — 001 | 2.2897e — 007
P13 | 10 | 10 | 644 | 0.5000 | 2.7951e — 005 | 9.8102e¢ — 001 | 3.2449e — 007
P14 | 2 2 7 0* 6.8653e — 020 | 3.9944e — 001 | 3.9929e — 007
P14 | 10 | 10 7 0" 3.4326e — 019 | 3.9944e — 001 | 3.9929e — 007
P14 | 20 | 20 7 0* 6.8653e — 019 | 3.9944e — 001 | 3.9929e — 007
P14 | 50 | 50 7 0.0625 | 1.7163e — 018 | 3.9944e — 001 | 3.9929e — 007
P14 | 100 | 100 7 0.1250 | 3.4326e — 018 | 3.9944e — 001 | 3.9929e — 007
P14 | 200 | 200 7 0.4219 | 6.8653e — 018 | 3.9944e — 001 | 3.9929e — 007
2.

P14 | 400 | 400 7 7031 | 1.3731e — 017 | 3.9944e — 001 | 3.9929e — 007
P15 | 4 4 17 0* 1.7193e — 009 | 9.0837e — 005 | 1.2294e — 007
P15| 20 | 20 17 | 0.0313 | 8.5966e — 009 | 9.0837e — 005 | 1.2294e — 007
P15| 40 | 40 17 | 0.0313 | 1.7193e — 008 | 9.0837e — 005 | 1.2294e — 007
P15 100 | 100 | 17 | 0.1094 | 4.2983e — 008 | 9.0837¢ — 005 | 1.2294e — 007
P15 200|200 | 17 | 0.2813 | 8.5966e — 008 | 9.0837e¢ — 005 | 1.2294e — 007
P16 fail fail fail fail

P17 | 4 6 14 | 0.0313 | 7.8770e — 000 | —1.1943e — 001 | 6.7781e — 007

M
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Table 6. Numerical results of the combined method with dt = le — 2

No.| n Iter | CPU(s) fr A* %

P1 3 3 90 0.0625 | 1.0225e — 014 | 1.4328e — 000 | 1.4013e — 005
P2 6 6 78 0.1250 | 3.5505e — 005 | —4.4169e — 005 | 9.7840e — 006
P3 3 15 3 0* 1.1279e — 008 | 1.3966e — 001 | 2.6052e — 003
P4 2 2 36 0.0938 | 8.6100e — 009 | 4.9937e¢ — 005 | 7.6421e — 002
P5 3 10 46 0.0313 | 7.5602e — 002 | —8.3937e — 012 | 2.6963e — 005
P5 3 20 | 145 | 0.1094 | 9.5334e — 002 | —8.8936e — 008 | 7.9937¢ — 006
P6 5 7 11 0* 9.7541e — 011 | 2.0000e — 000 | 5.1672e — 005
P6 | 10 | 12 14 0* 1.0314e — 009 | 2.0000e — 000 | 1.7620e — 006
P6 | 20 | 22 16 0.0313 | 1.9155e — 003 | 2.0000e — 000 | 4.6426e — 007
P6 | 30 | 32 17 0" 5.5257e — 002 | 2.0000e — 000 | 1.3659e — 007
P7 2 31 6 0* 5.4661e — 001 | 2.3977e + 001 | 1.7146e — 007
PT7 6 31 16 0.1406 | 2.2877e — 003 | 2.8101le — 003 | 1.7110e — 006
P7 8 31 18 0.3281 | 1.8162e — 005 | 7.5430e — 006 | 3.0671e — 007
PT7 9 31 17 0.4375 | 1.4375e — 006 | 3.1599e — 007 | 1.0825e — 007
P8 4 5 17 0* 2.2513e — 005 | 1.0022e — 003 | 5.1724e — 006
P8 | 10 | 11 13 0" 7.4402e — 005 | 1.3945e¢ — 002 | 2.3004e — 006
P8 | 20 | 21 15 0* 1.6347¢ — 004 | 5.1832e — 002 | 4.3120e — 007
P8 | 50 | 51 16 0.0313 | 1.7043e — 002 | 1.5880e — 000 | 3.5905e — 007

P8 100|101 | 17 | 0.1250 | 4.5525e¢ — 001 | 6.6031le — 000 | 1.1564e — 007
P8 200|201 | 17 | 0.2813 | 3.7352e + 001 | 5.5580e + 001 | 1.1867e¢ — 007
P9 4 8 29 0" 9.3763e — 006 | 3.9279e¢ — 005 | 2.3035e — 005
P9 | 10 | 20 29 0.0313 | 2.9366e — 004 | 2.1416e — 003 | 6.2639e — 005
P9 | 20 | 40 34 | 0.0625 | 6.4022e — 003 | 2.0922e — 004 | 1.2226e — 006
P9 | 50 100 | 22 0.0938 | 4.2961e — 000 | 1.7843e — 002 | 2.6228e — 006
P9 | 100|200 | 19 0.1250 | 9.7096e + 004 | 2.2412e — 001 | 1.8434e — 007

0

P9 | 200 | 400 | 10 .2188 | 4.7116e 4 013 | 2.6924e 4 002 | 3.8677e¢ — 005
P10| 2 3 5 0" 9.8341e — 010 | 2.0000e — 000 | 5.6000e — 000
P11 | 4 10 85 0.0625 | 1.4433e — 000 | 4.7750e — 000 | 1.0525e — 007
P11 | 4 20 17 0" 8.5822e + 004 | 1.5158e + 003 | 1.4150e — 007
P11 | 4 50 12 0* 2.6684e + 016 | 1.4581e + 009 | 1.5367e — 007
P11| 4 |100| 12 0.0313 | 1.5087e + 034 | 1.5197e + 018 | 3.3363e — 005
P12 | 3 3 2 0* 1.4000e — 003 | —9.4304e — 000 | 1.0000e + 001
P13| 5 5 684 | 0.2813 | 5.1161e — 017 | 2.3764e — 001 | 2.3107e — 007
P13 | 10 | 10 | 644 | 0.5000 | 2.7951e — 005 | 9.8102e¢ — 001 | 3.2449e — 007
P14 | 2 2 7 0* 6.8653e — 020 | 3.9944e — 001 | 3.9929e — 007
P14 | 10 | 10 7 0" 3.4326e — 019 | 3.9944e — 001 | 3.9929e — 007
P14 | 20 | 20 7 0* 6.8653e — 019 | 3.9944e — 001 | 3.9929e — 007
P14 | 50 | 50 7 0.0625 | 1.7163e — 018 | 3.9944e — 001 | 3.9929e — 007
P14 | 100 | 100 7 0.1250 | 3.4326e — 018 | 3.9944e — 001 | 3.9929e — 007
P14 | 200 | 200 7 0.4219 | 6.8653e — 018 | 3.9944e — 001 | 3.9929e — 007
P14 | 400 | 400 7 2.7031 | 1.3731le — 017 | 3.9944e — 001 | 3.9929e — 007
P15| 4 4 17 0" 1.7231e — 009 | 9.6064e — 005 | 1.2314e — 007
P15 | 20 | 20 17 0* 8.6154e — 009 | 9.6064e — 005 | 1.2314e — 007

P15 | 40 | 40 17 | 0.0313 | 1.7231e — 008 | 9.6064e — 005 | 1.2314e — 007
P15| 100 | 100 | 17 | 0.1094 | 4.3077e — 008 | 9.6064e — 005 | 1.2314e — 007
P15 200|200 | 17 | 0.2500 | 8.6154e — 008 | 9.6064e — 005 | 1.2314e — 007
P16 fail fail fail fail

P17 | 4 6 14 | 0.0313 | 7.8770e — 000 | —1.1943e — 001 | 6.7781e — 007

M
w
)
I
S.
B

From the previous 2 tables, we can see that the combined method works well for ([Ill). However a more
efficient Wtc method designated for [I) should work even better. But this is beyond the scope of this

paper.

6. Concluding remarks By combining the Newton’s direction and the steepest descent direction,
a new dynamical system ([I{J) is proposed in this paper. The convergence and stability of this dynamical
system are fully addressed in Section 3. Our numerical results reported in Section 5 clearly illustrate that
our new method works well numerically. However, we should point out that the optimal choice of the
parameters 61 and d5 in () is somehow problem dependent, this can be seen from the numerical results
of problems P5 and P17 in Table 2. Even though the Wtc method can not be applied directly to solve
(@), yet a combination of Newton’s direction and the Wtc direction also works well as shown in Table 5
and Table 6.

Finally, in [32], a globally convergent iterative algorithm for unconstrained optimization was proposed,
which actually combines Newton’s direction and the steepest descent direction within each iteration.
The method involves some complicated controls, line search strategies, and direction search which are
intended to satisfy the angle condition for global convergence. However, in our continuous Newton-type
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method ([[), we set a natural way to define the trajectory without line search and angle condition, but
the global convergence is guaranteed and our preliminary computational experiment shows its efficiency
and reliability.
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