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Abstract

A non-Darcy partial differential equation (PDE) model for flow through porous media
is presented. The focus is on the numerical implementation of the model using Sandia
National Laboratories PDE simulation framework, Sundance. In particular, the discussion
will include the finite element discretization and how parallelism is accomplished.

1. INTRODUCTION

Historically, single-phase, single-species flow through porous media has been modeled
using either the linear Darcy’s law or some empirical nonlinear relationship between the
pressure gradient and the Darcy velocity as an approximation to momentum conservation.
While this approach has the advantage of simplifying the flow model, there is no basis
in first principles to support the use of these approximations. This lack of formalism is
in stark contrast to a recent approach using microscale conservation laws and averaging
techniques to methodically derive a macroscale momentum equation appropriate for more
complex flow scenarios [GM04, GM03, GM05a, GM05b, GTS02]. Gray and Miller begin
with microscale conservation laws for mass, momentum, energy, and an entropy inequality
that are known to hold for all physical systems; average the equations up to the macroscale;
and incorporate laws of thermodynamics to generate closure relations. The result of
their Thermodynamically Constrained Averaging Theory (TCAT) approach is a closed,
nonlinear, macroscale flow model based upon first principles which incorporates both a
momentum conservation equation and a continuity equation.

There are two nonlinearities in the model equation guaranteeing momentum conserva-
tion. One, the inertial term, can be attributed to Forchheimer’s [For01] expression for
the nonlinear relationship between the pressure gradient and the Darcy velocity, q. The
other term, the advective acceleration, has the form

∇ ·

(

ρq qT

φ

)

, (1)

where q is a column vector, ρ represents the fluid density, and φ denotes the porosity of
the porous medium. In the literature, this term is either missing entirely from the flow
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model or assumed to be negligible. The justification for this assumption is that porous
media flow is always so slow that the term is insignificant in comparison to the other
terms in the equation [Bea72, page 104].

However, in this paper we include the advective acceleration term in the flow model
(see § 2) to more thoroughly examine its numerical contribution as the velocities of the
system increase. In particular, we seek a more formal description of the significance of
the nonlinearity in real systems of interest. By “real systems of interest”, we refer to
heterogeneous porous media. Historically this aspect of non-Darcy flow has been given
little attention; in fact, the recent publications by Fourar et al. comprise much of the
relevant literature [FLKFH05, PF06].

Section 3 describes the software used to simulate the porous medium flow model, the
two-dimensional test problem is discussed in § 4, numerical results are provided in § 5,
and § 6 contains concluding remarks.

2. MODEL EQUATIONS DESCRIBING SINGLE-PHASE FLOW

THROUGH POROUS MEDIA

The steady-state model we consider for single-phase, single species groundwater flow
through a porous medium is

ρ = ρ0 exp (β (p − p0)) (2)

∇ · (ρq) = S ′ (3)

∇ ·

(

ρqqT

φ

)

+ φ (∇p − ρg) + φRq = 0, (4)

where the unknown quantities are pressure, p, and Darcy velocity, q. Additionally, t

represents time, g represents gravitational acceleration, and external mass sources/sinks
are represented in the continuity equation (3) by S ′.

The stress tensor, R, in the momentum equation is based upon Forchheimer’s nonlinear
relationship between the Darcy velocity and the pressure gradient. Specifically,

R =
A (1 − φ)2

µ

D2φ4
+

Bρ (1 − φ) |q|

Dφ5
, (5)

where A is the inverse of dimensionless hydraulic conductivity [Mil05], B is an experi-
mentally derived constant [PHM01], D is the surface average grain diameter of the porous
medium, and µ is the dynamic viscosity of the fluid.

3. SOFTWARE

To solve the system of PDEs in (3) and (4), we use the Sundance object-oriented PDE
simulation framework from Sandia National Laboratories. Its underlying solver capabil-
ities are contained in another Sandia software framework, Trilinos, and a description of
the two frameworks follows.

3.1. Sundance. Sundance [Lon04] is a system for specifying, building, and applying par-
allel finite element approximations to general PDEs. Sundance consists of user-callable
components written in C++ (with optional Python wrappers) that allow the user to
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specify the PDE and associated boundary conditions in weak form using operator over-
loading on a family of symbolic objects. The Sundance symbolic objects and operators
can be used to assemble virtually any PDE. Each test or unknown function in a Sundance
problem is constructed with a specifier of its finite-element basis, and any integral can
be given a specifier for the type and order of quadrature rule to be used. Stabilization
terms can be added at the symbolic level; typically, these involve the mesh size h, so a
special symbolic object CellDiameterExpr has been created which when evaluated, refers
to the mesh to obtain a numerical value of h on each element. The ability to specify basis,
quadrature, and optional stabilization terms gives the Sundance user fine control over the
discretization process.

Since it is easy to change the equation and/or the boundary conditions, it is easy to
experiment with different models by making a small number of changes to Sundance-
based simulation code. The symbolic problem setup capability of Sundance is useful not
only for rapid development of forward simulators such as our flow model, but even more
importantly, it makes possible the concurrent specification of gradient and/or adjoint
equations, greatly facilitating the application of gradient-based optimization methods.
Because a Sundance simulator has a symbolic representation of the problem at hand,
gradients can be evaluated using automatic, in-place differentiation concurrently with
evaluation of objective functions and residuals.

3.2. Trilinos. Sundance does the work of assembling matrices and vectors in parallel from
a problem specification; computations on those mathematical objects are then done using
the Trilinos family of solver components [HBH+05]. Trilinos includes a high-performance,
low-level matrix/vector library (EPetra), incomplete factorization preconditioners (IF-
PACK), algebraic multilevel solvers and preconditioners (ML), Krylov solvers (Belos),
and nonlinear solvers (NOX). Trilinos also provides a set of abstract interfaces, Thyra,
allowing interoperability with other solver libraries.

Both Sundance and Trilinos are freely available under the lesser Gnu Public License.

4. TEST PROBLEM DESCRIPTION

We simulate two-dimensional steady-state groundwater flow through a heterogeneous
porous medium using the TCAT model ((3) and (4)). The goal is to determine the
significance of the nonlinear terms in the flow model; in particular, we focus on the
advective acceleration term shown in (1).

We will compare the numerical contribution of (1) to that of the linear portion of
equation (5) as the steady-state velocity of the system increases. We fix the pressure
gradient across the domain to induce flow, while the other two boundaries exhibit no flow
conditions. In this case, we have no external sources/sinks of mass, so S ′ = 0.

The domain of interest, Ω, is shown in Figure 1 as a square of dimension [0, 1 km] ×
[0, 1 km]. The top, right, bottom, and left boundaries of the domain are denoted ΓT , ΓR, ΓB,

and ΓL respectively. The fixed pressure boundaries are ΓL and ΓR, while the no flow
boundary condition on ΓT and ΓB implies that q · n = 0 there where n is the unit
outward normal vector to the boundary.

4.1. Weak formulation. To use Sundance to solve the system of equations (3) and (4)
with the finite element method, we first write the system of equations in weak form. While
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Figure 1. Test problem domain

Sundance allows the unknowns to be represented by different basis functions, due to mem-
ory constraints imposed by our computing architecture we must represent the pressure
and velocity unknowns using the same basis functions. To stabilize this discretization, we
incorporate pressure stabilization techniques by adding a term of the form βh2∇2p to the
mass equation where h is the diameter of the finite element cell (see § 3.1). This choice
is a simplified version of the stabilization techniques of Hughes [FH93, HH92].

We use the notation p̂ and q̂ for the pressure and velocity test functions, respectively.
Prior to specifying the weak form of the PDE within Sundance, we define p, p̂,q, and q̂

to be Lagrange interpolation polynomials of degree one. The system of equations (6) and
(7) provides the resulting weak form of our test problem. Note that in equation (7), the
expansion for R is considered to be equation (5) with the density equation of state from
equation (2) substituted in the quadratic term.

∫

Ω

βh2∇p · ∇p̂ dΩ −

∫

Ω

ρ0 exp (β (p − p0))q · ∇p̂ dΩ = 0 (6)

∫

Ω

∇ ·

(

ρ0 exp (β (p − p0))qqT

φ

)

· q̂ dΩ +

∫

Ω

φ∇p · q̂ dΩ = −

∫

Ω

φRq · q̂ dΩ (7)

As for boundary conditions, the no flow boundary conditions on ΓT and ΓB are implicit
in the weak form, but the Dirichlet pressure boundary conditions must still be specified
on ΓL and ΓR. Thus, (6) and (7) together with

p = pL on ΓL (8)

p = pR on ΓR (9)

define the weak form of the test problem where the constants pL and pR denote the fixed
pressure value on ΓL and ΓR, respectively.

4.2. HETEROGENEITY. In addition to the weak form of the model equations we
need a representation for the heterogeneous medium which is input for the flow model
via the parameter A in equation (5). We assume that the hydraulic conductivity of
most natural porous medium systems is log-normally distributed [DS98, page 38], and
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determine the spatial correlation between hydraulic conductivity values across the domain
using a Gaussian variogram, shown in equation (10).

Several algorithms exist to generate a random field exhibiting a standard normal distri-
bution with spatial correlation; turning bands, sequential Gaussian algorithm, and the fast
Fourier transform (FFT) are a few examples [DJ98, pages 120-122, 139-148]. The simula-
tions shown here use s sequential Gaussian algorithm as explained in [DJ98, section V.2.3];
a specific implementation of this algorithm, sgsim, is distributed within the Geostatistical
Software LIBrary (GSLIB). GSLIB source code, documentation, and executables can be
found at the website http://www.gslib.com/, and further documentation is provided in
the text [DJ98].

Table 1 provides an explanation of the input parameters required for sgsim. The
goal is to generate a log-normally distributed and spatially correlated random field of
100×100 homogeneous blocks to approximate a realistic hydraulic conductivity field over
a square domain of dimension [0, 1 km]× [0, 1 km]. We choose a correlation length of 100
meters and 102 nodes per dimension over the area [−5, 1005] × [−5, 1005]. Thus, there
are approximately ten correlation lengths in each dimension and ten nodes per correlation
length. A Gaussian model given by

γ (d) = c

[

1 − exp

(

−
9d2

a2

)]

(10)

was used to determine the correlation between two locations separated by a distance d.
This model is defined by the sill, c, and correlation length a.

Parameter Definition Value
nx number of nodes in x direction, similarly for y 102
xmn location of first x node (origin of x axis), similarly for y -5.0
xsiz spacing of nodes in x direction, similarly for y 10.0
seed integer seed to the pseudorandom number generator 69069
nst number of nested variogram structures 1
c0 isotropic nugget effect 0
it integer flag specifying type of variogram model 3
cc sill (note: c0+cc=1.0) 1.0
ang1 angle defining orientation of an ellipsoid in 3D 0.0
ang2 angle defining orientation of an ellipsoid in 3D 0.0
ang3 angle defining orientation of an ellipsoid in 3D 0.0
aahmax correlation range in horizontal maximum direction 100.0
aahmin correlation range in horizontal minimum direction 100.0
aavert correlation range in vertical direction 100.0

Table 1. GSLIB Parameters. Input parameters for sgsim to generate
a field variable with mean zero and standard deviation one [DJ98, pages
170-174,330-336].
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5. NUMERICAL RESULTS

Table 2 provides most of the model parameter values used to perform the Sundance
simulations in this section. However, numerical values for the grid-dependent parameters
β and h appear in Table 3. The Trilinos nonlinear solver, NOX, was used to solve the
nonlinear system associated with the TCAT flow model by Newton’s method with a
linesearch globalization. To compute the Newton step, we used the BICGSTAB Krylov
method preconditioned with domain decomposition and incomplete LU factorizations on
the subdomains. In particular, the Trilinos packages TSF and IFPACK define the linear
solver and preconditioner, respectively. Furthermore, preconditioning in this fashion is
the default when using TSF linear solvers.

The heterogeneous field generated using GSLIB is defined at the nodes of a 100 × 100
grid, but one can see that the grid refinement in Table 3 begins with a 400 × 400 grid.
This is because the 400 grid is the first grid on which the field structure (i. e. block
heterogeneity) becomes apparent due to the existence of multiple nodes in the interior
of each grid cell. The grid refinement study was performed by comparing only pressure

Parameter Value Equation(s)
β grid dependent stabilization parameter (6)
h (m) grid dependent cell diameter parameter (6)
A log-normally distributed, spatially correlated random field (5)

ρ
(

kg
m3

)

1000.0 (4) and (5)

φ 0.442 (4) and (5)
g

(

m
s2

)

0 (4)
B 2.4194 (5)

µ
(

kg
m-s

)

0.00114 (5)

D (m) 1.9996e-04 (5)

Table 2. Model Parameters.

nodes on successively finer grids. The pressure values computed on an N × N grid are
denoted by PN , while the error on that same grid is given by EN . We define

EN ≡
‖PN − PN

2N
‖2

N + 1
, (11)

where P N

2N
denotes that while the pressure values were computed using the 2N × 2N

grid, in this error computation we are only using the values which correspond to spatial
locations on the N ×N grid (i.e. points common to both the N ×N and 2N × 2N grids).

As N → ∞, the ratio EN

E2N

will approach the order of the method. Since E800

E1600

= 4.2, we
appear to have resolved the heterogeneity enough to see the second order convergence we
expect from our solution strategy. However, to truly guarantee second order convergence
we should solve the TCAT model on a 6400×6400 grid so that the extra data point E3200

can be computed. Unfortunately, the increased memory requirements of the 6400 × 6400
grid require at least 125 processors. It is difficult to obtain that many dedicated processors
on our blade cluster; thus, we leave that fine grid computation for a later date.
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Grid β h Error Avg. Krylovs/Newton
400 4.0e-08 2.5 E400=16.8103 101
800 8.0e-07 1.25 E800=12.8317 322

1600 4.0e-05 0.625 E1600=3.0593 288
3200 4.0e-03 0.3125 298

Table 3. Grid Refinement.

To test the scalability of the simulator we compare the run time for three different grids
in Table 4. Starting with the 400 × 400 grid run on two processors, we simultaneously
quadruple the number of unknowns and the number of processors used to run the simu-
lation. For the simulator to scale well, the run times should be approximately constant,
and in Table 4 one can see that this is the case. Thus, this simulator scales well as the
number of processors increases.

Grid # Processors Total Time (min.) Nonlinear Solver Time (min.)
400 2 42.9 41.3
800 8 45.0 43.3

1600 32 48.0 46.2

Table 4. Parallel Scalability.

6. CONCLUSIONS

We have shown that using the Sundance framework to simulate single-phase, single-
species groundwater flow through a porous medium in two spatial dimensions results in
second order convergence in pressure once the grid is fine enough to fully resolve the
heterogeneity of the porous medium. Furthermore, the simulator is shown to have almost
perfect parallel scalability. It appears that this strategy is a sufficient method to use for
future examination of the advective acceleration term.
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