
Finding A Stable Solution of A System of Nonlinear Equations ∗

C.T. Kelley† Liqun Qi‡ Xiaojiao Tong§ Hongxia Yin¶

July 30, 2006

Abstract

This paper presents new methods for finding dynamically stable solutions of systems of

nonlinear equations. The concepts of stability functions and the so-called stable solutions

are defined. Based on those new concepts, two models of stable solutions and three stability

functions are proposed. These stability functions are semismooth. Smoothing technology is

applied to such stability functions. Smoothing Newton methods are proposed to solve the

stable solution models. Convergence properties of these methods are studied. We report on

numerical examples which illustrate the utility of the new approach.

Key words. System of Nonlinear Equations; Stable Solutions; Saddle-Node Bifurcation;

Hopf Bifurcation; Stability Functions; Smoothing Newton Method.

AMS subject classifications(2000): 65H10, 65K10,

1 Introduction

Consider the following system of nonlinear equations:

F (x) = 0, (1.1)

∗This work is supported by US National Science Foundation grant DMS-0404537, US Army Research Office

grants W911NF-04-1-0276 and W911NF-05-1-0171, the Hong Kong Research Grant Council and Natural Science

Foundation of China (NSF60474070, NSF70472074 and KYQD200502).
†Department of Mathematics, Center for Research in Scientific Computation, North Carolina State University,

Raleigh, North Carolina, USA. E-mail: tim kelley@ncsu.edu.
‡Department of Mathematics, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong. E-mail:

maqilq@cityu.edu.hk.
§Institute of Mathematics, Changsha University of Science and Technology, Changsha, Hunan, 410076, China.

E-mail: tongxj@csust.edu.cn.
¶Chinese Academy of Sciences Research Center on Data Technology and Knowledge Economy, Department

of Mathematics, Graduate University of the Chinese Academy of Sciences, Beijing, 100049, P.R. China. Email:

hxyin@gucas.ac.cn.

1

where F : <n → <n is a twice continuously differentiable function. Such a system arises from

various applications. There are many methods for solving (1.1) [22, 7, 14, 13], most of which aim

to find one solution of (1.1). However, such a solution may not be usable for applications. In

recent years, some methods have been developed for finding all solutions of (1.1), in particular,

in the case that (1.1) is a system of polynomial equations. In general, such methods can only

work for small n. When n is not too small, say, bigger than 20, such methods cannot work as in

general the number of solutions of (1.1) increases exponentially as n increases. It will be beyond

the current computational capacity to find all solutions of (1.1) in such a size in a short time in

general. The purpose of this paper is to propose and analyze methods which exclude dynamically

unstable solutions, but which do not attempt to find all solutions, or to perform a potentially

expensive continuation.

A typical example is the electric power system. The operations of power systems are described

by power flow equations in the form of (1.1). The number of variables, n, is large in general. A

very important topic in power engineering is to avoid saddle node bifurcation solutions or Hopf

bifurcation solutions of (1.1) [1, 2, 6, 8, 9, 11, 16, 20], and solutions near such bifurcation points.

If a power system is operating at or near such a bifurcation point, then catastrophic events such

as power system blackouts may occur. Such an issue also arises from electronic systems in the

design of power supplies [19, 32].

We now introduce a function called stability function h : <n → <m
+ . In the simple case,

m = 1. When hi(x) is equal to or near 0 for one i, we reject x, even if F (x) = 0. In this way we

can steer the iteration away from unstable solutions, and even include criteria which are specific

to the appplication. In the later sections, we will discuss such stability functions. We will see

that h is in general a composition function of a minimum or a maximum operation with the

eigenvalue or single value functions of matrix functions associated with the Jacobian of F at x.

Such functions are in general nonsmooth, possibly semismooth.

Then, we may formulate such a problem (called the stable solution problem) as







F (x) = 0,

h(x) ≥ δ,
(1.2)

where δ > 0 is the vector of tolerance in <m.

On the other hand, the system of unstable solutions can be described by







F (x) = 0,

h(x) = 0.
(1.3)

We use one typical example to understand the effect of (1.2). Denote the eigenvalues of ∇F (x)

by λi(∇F (x)), with |λi(∇F (x))| ≥ |λj(∇F (x))| for 1 ≤ i < j ≤ n. If there exists an i such that

2

|λi(∇F (x))| = 0, then x is a saddle-node bifurcation point of the nonlinear system of equations

(1.1). So we can define

h(x) = min
1≤i≤n

|λi(∇F (x))|

and use the system (1.2) to avoid such a saddle-node bifurcation point.

Next we will estimate the distance between the solution satisfying (1.2) and the unstable

solution set.

Proposition 1.1 Suppose that h : Rn → Rm is Lipschitz continuous with a Lipschitz constant

L > 0. Let x∗ be a stable solution of (1.1) in the sense of (1.2). Denote the unstable solution set

as

Ω = {x | F (x) = 0, h(x) = 0}.

Then it holds

dist(x∗, Ω) ≥
‖δ‖

L
. (1.4)

Proof. For any x ∈ Ω, from the condition of Lipschitz continuity and the solution of (1.2)

x∗ it holds

‖δ‖ ≤ ‖h(x∗)‖ = ‖h(x) − h(x∗)‖ ≤ L‖x − x∗‖.

This follows that

‖x − x∗‖ ≥
‖δ‖

L
.

Then from the definition of the distance of a point to a closed set, we have

dist(x∗, Ω) = min
x∈Ω

‖x − x∗‖ ≥
‖δ‖

L
.

We complete the proof. ¤

In order to present some effective approaches for solving (1.2), we can reformulate the system

(1.2) as the following equivalent system with variable z = (x, y), x ∈ Rn, y ∈ Rm:

Model I: Unconstrained equations






F (x) = 0,

hi(x) − |yi| = δi, (i = 1, · · · , m)
(1.5)

In fact, we can construct other equivalent unconstrained equations such as






F (x) = 0,

hi(x) − δi(1 + y2
i) = 0, (i = 1, · · · , m)

Another possible model is as follows.

Model II: Bounded constrained equations

3



















F (x) = 0,

h(x) − y = δ,

y ≥ 0.

(1.6)

For the above two systems, later we can see that h is in general nonsmooth, as it needs to

involve eigenvalue and maximum operations. If h is semismooth or even strongly semismooth,

we may use some semismooth Newton methods or smoothing Newton methods to solve (1.5)

and (1.6). There are plentiful papers related to the approach of semismooth equations (see

[5, 10, 12, 28, 31, 30]). Most of them enjoy nice global and local convergence.

The remaining sections are distributed as follows. In Section 2, we propose three stability

functions. In Section 3, we discuss the semismooth properties of these three stability functions.

We investigate smoothing functions of such stability functions and their properties in Section 4.

In Section 5, we present a smoothing Newton method to find a stable solution for the model of

unconstrained equations. We display numerical examples to illustrate our models in Section 6

and make some final comments in Section 7.

2 Stability Functions

In this section, we propose some stability functions for (1.1). We only consider stability functions

in the form h : <n → <+, i.e., m = 1 in the context of the introduction.

According to the requirements of practical applications and in order to establish effective

numerical methods, our requirements for stability functions are as follows:

• the solution x is not a saddle node bifurcation point or close to such a point. If ∇xF (x) is

singular, then x is called a saddle node bifurcation point [3, 8, 9]. If ∇xF (x) is not near

singular, then x is not close to a saddle node bifurcation point.

• the solution x is not a Hopf bifurcation point or near such a point. If ∇xF (x) has a pair of

conjugate eigenvalues passing the imaginary axis while the other eigenvalues have negative

real parts, then x is called a Hopf bifurcation point [8, 11, 20].

• the solution is stable in the sense that the eigenvalues of ∇F (x) has negative real part.

This is the classically stable concept in nonlinear equations;

• the stable function proposed will be local Lipschitz at least so that we can construct some

effective approach to solve the system (1.2).

4

Recall that we have assumed that F is twice continuously differentiable. We can satisfy the

first and second requirements above if we set in (1.2) that

h0(x) = min
1≤i≤n

|Reλi(∇F (x))|. (2.1)

Here λi(A) is the ith eigenvalue of A, repeated for algebraic multiplicity. The difficulty with such

a stability function is that h0 is not Lipschitz continuous, then methods based on semismoothness

or Lipschitz continuity cannot be applied.

2.1 Special Case I

If we only wish to impose a nonsingularity constraint on ∇F , we can formulate the problem

differently. Let σi denote the ith singular value. Define

h1(x) = min
1≤i≤n

σ2
i (∇F (x)) = min

1≤i≤n
λi(∇F (x)T∇F (x)). (2.2)

We may reformulate (1.2) as






F (x) = 0,

h1(x) ≥ δ.
(2.3)

Note that (2.3) misses the Hopf bifurcation constraints.

2.2 Special Case II

Here wish to find a stable solution in the classical sense that all the eigenvalues of ∇F (x) are in

the left half plane. To make this possible and consider the requirements for stability functions,

we use the Cayley transform to construct a stability function.

Let σ > 0 and let A be an n × n matrix. Define

C(A) = (A − σI)−1(A + σI). (2.4)

C is called the Cayley transform of A. If n is not too large, it is possible to actually compute C.

If n is large, the action of C on a vector can be computed with a matrix-vector product and a

linear solvent.

Let {λ} be the eigenvalues of A. The eigenvalues of C are {µ}, where

µ =
λ + σ

λ − σ
. (2.5)

Now, let λ = x + jy, where x < 0. Then

µ =
x + σ + jy

x − σ + jy

5

implies that |µ| < 1. If, on the other hand x > 0, then |µ| > 1.

So we have a stable solution if the spectral radius of C(∇F), ρ(C(∇F)) < 1. However, we

note that the spectral radius of C(∇F) is non-Lipschitz, hence we work with the norm.

To do this we first pick σ > 0 so that ∇F − σI is nonsingular at the initial iterate x0. Then

define

h2(x) = 1 − ‖C(∇F (x))‖1 (2.6)

where ‖ · ‖1 is the `1 matrix norm.

So, one formulation for (1.2) is






F (x) = 0,

h2(x) ≥ δ.
(2.7)

We can replace C(∇F) with C(∇F)p, for any integer p, which may improve performance.

2.3 Special Case III

In this subsection, rather than using the Cayley transform and the norm, we will use symmetric

functions of the eigenvalues of symmetric matrices to construct a stability function and to set

the system of stable solutions.

The following inequality comes from [18] (Prop. 16.2, P 182)

max λ(A + AT)/2 ≥ max Re(λ(A)). (2.8)

So the negative real value of eigenvalues for A can be replaced by maxλ(A + AT) < 0.

Define

h3(x) = − max
1≤i≤n

λi(∇F (x) + ∇F (x)T) (2.9)

The stable solution of (1.2) can be set by







F (x) = 0,

h3(x) ≥ δ.
(2.10)

3 Semismooth Property of Stability Functions

To analyze the semismooth property of the stability functions introduced in Section 2, we first

recall the definition and properties of spectral functions.

Denote the set of all n × n real symmetric matrices by Sn, and the set of all n × n real

orthogonal matrices by On.

6

Definition 3.1 A spectral function is one that it can be written as a composition of a symmetric

function f : <n → < and the eigenvalue function λ(·) : Sn → <n, often denoted by (f ◦ λ), and

the symmetric function f means that f(x) = f(Px) with any permutation matrix P .

For each X ∈ Sn, the spectral functions are denoted as (f ◦ λ)(X). Throughout this paper,

the set of orthogonal matrices corresponding to X is defined by

O(X) := {P ∈ On | PXP T = diag(λ(X))}.

According to the concept above, the following functions belong to the class of spectral func-

tions:

H(X) ≡ (f ◦ λ)(X) = min
1≤i≤n

λi(X), H(X) ≡ (f ◦ λ)(X) = max
1≤i≤n

λi(X). (3.1)

with X ∈ Sn.

Recall that a differentiable function is called an LC1 (SC1) function if its derivative function

is locally Lipschitz (semismooth). We say a function F is semidifferentiable at x ∈ Rn if the limit

lim
τ↘0

ĥ→h

F (x + τ ĥ) − F (x)

τ

exists for every direction h ∈ Rn (see [24]). There are some interesting properties for a spectral

function as follows (Lemma 3.2-Lemma 3.3 and Proposition 3.5 in [24]).

Lemma 3.1 A spectral function (f ◦ λ) satisfies the following properties:

(i) it is directional differentiable if f is semidifferential;

(ii) it is LC1 if and only if f is LC1;

(iii) it is SC1 if and only if f is SC1.

(iv) (f ◦ λ) is differentiable at point X if and only if f is differentiable at point λ(X). And the

gradient of (f ◦ λ) at X is given by

∇(f ◦ λ)(X) = UT
(

diag(∇f(λ(X)))
)

U, ∀U ∈ O(X). (3.2)

More generally, the gradient of (f ◦ λ) has the following formula

∇(f ◦ λ)(X) = V T
(

diag(∇f(µ))
)

V, (3.3)

for any orthogonal matrix V ∈ On and µ ∈ <n satisfying X = V T (diag µ)V.

Lemma 3.2 For any symmetric function f : Rn → R, the spectral function (f ◦λ) is semismooth

if and only if f is semismooth. If f is ρ-order semismooth (0 < ρ < ∞), the spectral function

(f ◦ λ) is min{1, ρ}-order semismooth.

7

According to above lemmas, we have the following conclusion.

Theorem 3.1 The stability functions h1(x), h2(x) and h3(x) introduced in Section 2 are semis-

mooth.

Proof. Denote

Y (x) = ∇F (x)T∇F (x), Z(x) = ∇F (x) + ∇F (x)T .

f1(y) = min
1≤i≤n

{yi}, f2(y) = max
1≤i≤n

{yi}.

The twice continuously differentiable assumption of F (x) implies that Y (x) and Z(x) are contin-

uously differential. On the other hand, f1(y) and f2(y) are symmetric and semismooth.

From the notation above, h1(x) and h3(x) can be rewritten as

h1(x) = (f1 ◦ λ)(Y (x)), h3(x) = (f2 ◦ λ)(Z(x)).

Then the semismooth property of h1(x) and h3(x) follows from the property of semismooth

composition functions.

Denote

W (x) = C(∇F (x)) = (∇F (x) − σI)−1(∇F (x) + σI), Rn → Rn×n.

W (x) is continuously differentiable. In addition, l1 norm is semismooth. Then from the property

of semismooth composition functions again we have the semismoothness of h2(x). We complete

the proof. ¤

4 Smoothing Functions of The Stability Functions

We will consider smoothing Newton methods for solving the nonsmooth systems (1.2), (1.5) or

(1.6). To this end, we study smooth approximation for the three stability functions proposed

in Section 2. On the other hand, we note that the three stability functions are related to the

so-called maximum nonsmooth function, i.e., f(x) = max{x1, x2, · · · , xn}. So we study the

smoothing function of the maximum function and its properties in the first.

For any ε > 0, define a smoothing function of f(x) by

fs(ε, x) =







ε ln
(
∑n

i=1 exi/ε
)

, if ε 6= 0

max1≤i≤n{xi}, if ε = 0,
(4.1)

where ε is called smoothing parameter. This smoothing function is also called exponential penalty

function and has the following characteristics (see [4, 30]).

8

Lemma 4.1 fs(ε, x) has the following properties for any ε > 0.

(i) fs(ε, x) is increasing with respect to ε, i.e., for any ε1 > ε2 > 0, it holds fs(ε1, x) ≥ fs(ε2, x).

Further, we have

0 ≤ fs(ε, x) − f(x) ≤ ε ln n. (4.2)

(ii) fs(ε, x) is continuously differentiable and

∂xfs(ε, x) =
n

∑

i=1

ai(ε, x)ei, (4.3)



















dfs(ε,x)
dε = ln

∑n
i=1 exi/ε − 1

ε

∑m
i=1 ai(ε, x)xi,

limε→0+
dfs(ε,x)

dε = ln|I(x)|,

ln|I(x)| ≤ dfs(ε,x)
dε ≤ ln n

(4.4)

with fixed x, where

ai(ε, x) =
exi/ε

∑m
i=1 exi/ε

, I(x) = {i | f(x) = xi}. (4.5)

(iii) For any fixed x ∈ Rn,

dist(∂xfs(ε, x), ∂f(x)) = o(ε), (4.6)

where dist(x, S) represents the distance from point x to set S.

Based upon the smoothing function fs for the maximum function f , we discuss some properties

of the smoothing function for the special spectral function (f ◦ λ)(X) with X ∈ Sn. Define

G(X) ≡ (f ◦ λ)(X) = max
1≤i≤n

λi(X), Rn×n → R. (4.7)

We construct the smoothing function of G(X) by the above technology and denote it as

Gs(ε, X), which has the following version for ε > 0

Gs(ε, X) ≡ (fε ◦ λ)(X) = ε ln
(

n
∑

i=1

eλi(X)/ε
)

. (4.8)

Then combining the properties of the spectral function, we have the following conclusions

(see Proposition 2.2 in [4]).

Proposition 4.1 For any X ∈ Sn, there exist an orthogonal matrix Q ∈ O(X) satisfying

X = QT (diag(λ(X))Q.

Furthermore, let λ1 be the largest eigenvalue of λ = λ(X). Then the following two conclusions

hold.

(i)

∇(fε ◦ λ)(X) = QT (diag(∇fε(λ)))Q = QT (diag(µ(ε, λ)))Q ∈ Rn×n, (4.9)

9

with

µi(ε, λ) =
eλi/ε

∑n
j=1 eλj/ε

=
e(λi−λ1)/ε

∑n
j=1 e(λj−λ1)/ε

. (4.10)

(ii) If X has multiplicity r for the largest eigenvalue λ1, then the first r rows of Q must form an

orthogonal basis of the eigenspace associated with λ1, these rows form a matrix Q1 ∈ Rn×r, and

it holds

lim
ε→0

µi(ε, λ) =















1

r
, i = 1, · · · , r,

0, i = r + 1, · · · , n.

(4.11)

Therefore,

limε→0 ∇(fε ◦ λ)(X) = QT (diag(
1

r
, · · · ,

1

r
, 0, · · · , 0))Q

=
1

r
QT

1 IrQ1.

(4.12)

From [23],

∂λ1(X) = {QT
1 Y Q1 : Y ∈ Cr}

with

Cr = {v ∈ Sr : V is positive semidefinite, tr(V) = 1}.

Hence we have

lim
ε→0

∇(fε ◦ λ)(X) ∈ ∂λ1(X). (4.13)

In the reminder of this section, we will discuss the smoothing functions of the three stability

functions introduced in Section 2.

4.1 Smoothing Function for h1

The function h1(x) can be written as equivalently

h1(x) = min
1≤i≤n

λi(∇F (x)T∇F (x)) = − max
1≤i≤n

λi(−∇F (x)T∇F (x)). (4.14)

Denote Y (x) = −∇xF (x)T∇xF (x). It is easy to see that Y is a symmetric real matrix. By

using the smoothing technology above we have that, for Y ∈ Rn×n,

(fε ◦ λ)(Y) = ε ln(
n

∑

i=1

eλi(Y)/ε). (4.15)

Furthermore, for ε > 0, we define θ1
ε : Rn → R to be the smoothing function of h1(x) as

θ1
ε (x) := −(fε ◦ λ ◦ Y)(x) = −ε ln

(

n
∑

i=1

eλi(−∇F (x)T∇F (x))/ε
)

, ∀x ∈ Rn. (4.16)

10

which is a smooth approximation of the function h1. Therefore, we can approximate the problem

(2.3) by the following smooth system of equations:






F (x) = 0,

θ1
ε (x) ≥ δ.

(4.17)

Moreover, from Lemma 4.1, Proposition 4.1 and the chain rule, we have the following results.

Proposition 4.2 Let θ1
ε , defined in (4.16), be the smoothing function of h1. Then the following

two conclusions hold.

(i) For ε > 0,

−ε lnn ≤ θ1
ε (x) − h1(x) ≤ 0; (4.18)

(ii) Denote the derivate of ∇(fε ◦ λ)(Y) by (see (4.9))

Dε(Y) = ∇(fε ◦ λ)(Y).

Then it holds that

∇θ1

ε (x) =
{

βε(x) ∈ <n
∣

∣

∣ (β(x))k =

n
∑

i,j=1

(Dε(Y))ij

[

n
∑

l=1

(
∂2fl

∂xi∂xk

·
∂fl

∂xj

+
∂2fl

∂xj∂xk

·
∂fl

∂xi

)
]}

. (4.19)

Proof. (i) Denote

h̄1(x) = max
1≤i≤n

λi(−∇F (x)T∇F (x)).

θ̄1
ε (x) = ε ln

(

n
∑

i=1

eλi(−∇F (x)T∇F (x))/ε
)

.

Then from Lemma 4.1 it holds

0 ≤ θ̄1
ε (x) − h̄1(x) ≤ ε lnn.

(4.18) follows directly.

(ii) The conclusion of (4.19) is obtained directly from the chain rule and Proposition 4.1. ¤

4.2 Smoothing Functions for h2

We consider the model (2.7):

h2(x) = 1 − ‖C(∇F (x)‖1. (4.20)

where F (x) is a smooth function, and for X ∈ Rn×n, C(X) = (X − σI)−1(X + σI) with σ > 0.

For convenience of expression, we denote

ĥ2(x) = ‖C(∇xF (x)‖1 ≡ ‖M(x)‖1 = max
1≤i≤n

n
∑

j=1

|Mij(x)|, (4.21)

11

where

M(x) = (Mij(x)) ≡
(

∇F (x) − σI
)−1(

∇F (x) + σI
)

∈ Rn×n.

Notice that the nonsmoothness of ĥ2(x) comes from the absolute value function and the

maximum function. Then we consider a double smoothing technology with smoothing parameter

ε > 0.

The first level smoothing function for |Mij(x)| is defined by

M ε
ij(x) ≡ ε ln

(

eMij(x)/ε + e−Mij(x)/ε
)

= |Mij(x)| + ε ln
(

e(Mij(x)−|Mij(x)|)/ε + e(−Mij(x)−|Mij(x)|)/ε
)

, (4.22)

where the aim of the second equality is to control the computing overflow.

The second level smoothing function is for the maximum function max1≤i≤n{fi}. Denote

Φε
i(x) ≡

n
∑

j=1

M ε
ij(x). (4.23)

From the smoothing technology introduced in Subsection 4.1, we construct a smoothing function

for ĥ2(x) by

θ̄2
ε (x) = ε ln

(

n
∑

i=1

eΦε
i(x)/ε

)

= Φ̄ε(x) + ε ln
(

n
∑

i=1

e(Φε
i(x)−Φ̄ε(x))/ε

)

, (4.24)

where Φ̄ε(x) = max1≤i≤n Φε
i(x). The second equality in (4.24) is designed for avoiding the overflow

phenomenon in computation. Finally, we construct the smoothing function of h2(x), denoted by

θ2
ε (x) by

θ2
ε (x) = 1 −

[

Φ̄ε(x) + ε ln
(

n
∑

i=1

e(Φε
i(x)−Φ̄ε(x))/ε

)]

. (4.25)

The system of (2.7) can be replaced by the following smoothing system







F (x) = 0,

θ2
ε (x) ≥ δ.

(4.26)

We also have the following proposition similar to the smoothing function of h1(x).

Proposition 4.3 Let θ2
ε , defined in (4.25), be the smoothing function of h2. We have for ε > 0

(i)

−ε (lnn + n ln2) ≤ θ2
ε (x) − h2(x) ≤ 0; (4.27)

12

(ii)

∇θ2
ε (x) = −

n
∑

i=1

n
∑

j=1

ai(ε, x)
eMij(x)/ε − e−Mij(x)/ε

eMij(x)/ε + e−Mij(x)/ε
∇Mij(x), (4.28)

where

ai(ε, x) =
eΦε

i(x)

∑n
j=1 eΦε

i(x)
,

∇Mij(x) = γij(x)

with γij(x) defined

γij(x) = ∇
(

G1
i·(x) • G2

·j(x)
)

= ∇
(

G1
i·(x)

)

G2
·j(x) + ∇

(

G2
·j(x)T

)

G1
i·(x)T , (4.29)

where the product included in the second equation above is the usual product of a matrix and a

vector.

Proof. (i) From Lemma 4.1 we have

0 ≤ M ε
ij(x) − |Mij(x)| ≤ ε ln2,

this follows

0 ≤ max
1≤i≤n

n
∑

j=1

M ε
ij(x) − max

1≤i≤n

n
∑

i=1

|Mij(x)| ≤ nε ln2. (4.30)

In addition, from Lemma 4.1 again, it holds

0 ≤ θ̄2
ε (x) − max

1≤i≤n
Φε

i(x) ≤ ε lnn. (4.31)

Combining with (4.30)-(4.31) and the notation above, we have the following derivation

θ̄2
ε (x) − ĥ2(x)

= θ̄2
ε (x) − max

1≤i≤n
Φε

i(x) + max
1≤i≤n

n
∑

i=1

M ε
ij(x) − max

1≤i≤n

n
∑

j=1

|Mij(x)|

≤ ε lnn + nε ln2 = ε(lnn + n ln2).

Then the conclusion (4.27) is proved.

(ii) From Lemma 4.1 and the chain rule we have

∇θ2
ε (x) = −

n
∑

i=1

ai(ε, x)∇Φε
i(x) (4.32)

13

with

ai(ε, x) =
eΦε

i(x)/ε

∑n
j=1 eΦε

j(x)/ε
.

On the other hand, we obtain by direct computation

∇Φε
i(x) =

n
∑

j=1

eMij(x)/ε − e−Mij(x)/ε

eMij(x)/ε + e−Mij(x)/ε
∇Mij(x). (4.33)

With a similar way we can prove that ∇Mij(x) = γij(x). From (4.32) and (4.33) we have (4.28).

The proposition is proved. ¤

In fact, we can compute γij(x) in (4.29) for ∇
(

G2
·j(x)T

)

and ∇
(

G1
i·(x)

)

as follows.

(i) The derivative of ∇
(

G2
·j(x)T

)

can be computed directly.

(ii) Consider the derivative of ∇
(

G1
i·(x)

)

. Denote

A(x) ≡ (∇F (x) − σI) = (G1(x))−1.

Then it holds for each fixed i and k = 1, · · · , n,

A−1
i· (x)A·k(x) =







1, if k = i,

0, if k 6= i.

It follows for k = 1, · · · , n,

∇x

(

A−1
i· (x)

)(

A·k(x)
)

+ ∇x

(

AT
·k(x)

)(

A−1
i· (x)

)T
= 0.

Above formula can be written equivalently as

∇x

(

A−1
i· (x)

)

A(x) + ∇x

(

A(x)T
)(

A−1
i· (x)

)T
= 0. (4.34)

Note that the second term above is a product of a third order tensor with a vector (or called a

first order tensor). The result of product is

∇x

(

A(x)T
)(

A−1
i· (x)

)T
∈ Rn×n,

where each element of the product is (for each fixed i)
(

∇x

(

A(x)T
)(

A−1
i· (x)

)T
)

lk

=
n

∑

j=1

(

∇x

(

A(x)T
)

)

lkj

A−1
ij (x).

From (4.34), we deduce that

∇x

(

A−1
i· (x)

)

= −

(

∇x

(

AT (x)
)(

A−1
i· (x)

)T
)

A−1(x). (4.35)

14

So we have

∇x

(

G1
i·(x)

)

= −

(

∇x

(

((G1(x))−1)T
)(

G1
i·(x)

)T
)

G1(x) ∈ <n×n. (4.36)

Here (G1(x))−1 = ∇f(x) − σI. Its derivative can be computed directly.

4.3 Smoothing Function for h3

We now consider the model (2.10). Similar to the function h1(x), we can construct the smoothing

function of h3(x) as follows.

Denote Y (x) = ∇xF (x) + ∇xF (x)T . Then Y is a symmetric real matrix. For ε > 0, define

θ3
ε (x) : Rn → R by

θ3
ε (x) := −(fε ◦ λ ◦ Z)(x) = −ε ln

(

n
∑

i=1

eλi(∇F (x)+∇F (x)T)/ε
)

, ∀x ∈ Rn. (4.37)

Finally, we can obtain the smoothing system of (2.10) as







F (x) = 0,

θ3
ε (x) ≥ δ.

(4.38)

Similar to the cases of h1 and h2, we have the following proposition.

Proposition 4.4 Let θ3
θ , defined in (4.37), be the smoothing function of h3. Then we have the

following two conclusions.

(i) For ε > 0

−ε lnn ≤ θ3
ε (x) − h3(x) ≤ 0. (4.39)

(ii) Denote (see (4.9)) the derivate of ∇(fε ◦ λ)(Y) by

Dε(Y) = ∇(fε ◦ λ)(Y).

Then it holds that

∇θ3

ε (x) =
{

βε(x) ∈ <n
∣

∣

∣ (β(x))k =

n
∑

i,j=1

(Dε(Y))ij

[∂2fi(x)

∂xj∂xk

+
∂2fj(x)

∂xi∂xk

]}

. (4.40)

Proof. The proof is similar to the one of Proposition 4.2. ¤

15

5 Smoothing Newton Methods

We generalize the three systems of equations (2.3), (2.7), (2.10) as







F (x) = 0,

h(x) ≥ δ,
(5.1)

which are equivalent to the following unconstrained system of semismooth equations







F (x) = 0,

−h(x) + |y| + δ = 0
(5.2)

with y ∈ R. Moreover, the absolute function |y| can be smoothed by

φ(ε, y) = ε ln(ey/ε + e−y/ε). (5.3)

By using a uniform notation, we denote the corresponding smoothing functions of h1(x), h2(x), h3(x)

as θ(ε, x). Based on the model of unconstrained equations (5.2), the systems of (4.17),(4.26),

(4.38) can be written equivalently as







F (x) = 0,

G(ε, x, y) ≡ −θ(ε, x) + φ(ε, y) + δ = 0.
(5.4)

5.1 Smoothing Newton Algorithm

The system of (5.4) is a basis on which we solve the stable solution system (i.e., solving the system

(5.2)). We will use the smoothing Newton method proposed in [26] to construct an algorithm, in

which we consider ε as a variable and set the equivalent system as

Φ(ε, x, y) =







ε

F (x)

G(ε, x, y)






= 0. (5.5)

Denote w = (ε, x, y), and define a merit function of (5.5) as

Ψ(w) = ‖Φ(ε, x, y)‖2. (5.6)

Choose ε̄ ∈ R++ and γ ∈ (0, 1) such that γε̄ < 1. Let w̄ := (ε̄, 0) ∈ R × Rn+1. Define

β : Rn+2 → R+ by

β(w) := γ min{1, Ψ(w)}.

16

Based on the choice of the parameters, we have the following equivalent relationship (see

Proposition 4 in [26])

Φ(w) = 0 ⇐⇒ β(w) = 0 ⇐⇒ Φ(w) = β(w)w̄. (5.7)

This also yields the type of smoothing Newton methods as follows.

Algorithm 1: Smoothing Newton Algorithm

Step 0. (Initialization)

Choose constant η ∈ (0, 1) and α ∈ (0, 1/2). Let ε0 := ε̄, x0 ∈ Rn, 0 6= y0 ∈ R be an

arbitrary point. Set k := 0.

Step 1. (Stop Test)

If ‖Φ(wk)‖ = 0 then stop. Otherwise let βk := β(wk).

Step 2. (Compute Perturbed Newton Direction)

Compute 4wk := (4εk,4xk,4yk) ∈ R × Rn × R by

Φ(wk) + Φ′(wk)4wk = βkw̄. (5.8)

Step 3. (Line Search)

Let lk be the smallest nonnegative integer l satisfying

Ψ(wk + ηl4wk) ≤ [1 − 2α(1 − γε̄)ηl]Ψ(wk). (5.9)

Define wk+1 := wk + ηlk4wk.

Step 4. Set k := k + 1 and go to Step 1.

we define a set to help the proof of the global convergence of Algorithm 1.

Ω := {w = (ε, x, y) ∈ R × Rn × R| ε ≥ β(w)ε̄}. (5.10)

It is obviously that w0 = (ε0, x0, y0) ∈ Ω. The points in Ω ensure the strictly nonnegative

requirement of the smoothing variable ε at nonsolution points, which is the necessary condition

for the smoothing approach.

The remaining part of this section devotes to the convergence analysis of Algorithm 1.

5.2 Global Convergence

Proposition 5.1 Suppose that for any k > 0 and wk ∈ R++ × Rn × R, Φ(wk) is nonsingular.

Then Algorithm 1 is well-defined at the kth iteration. Furthermore, for each fixed k ≥ 0, if

εk ∈ R++, wk ∈ Ω, we have

εk+1 ∈ R++, wk+1 ∈ Ω.

17

Proof. From the properties of smoothing functions discussed in Section 4 we know that for

any (ε, x, y) ∈ R++ × Rn × R, the function Φ(w) is continuously differentiable. Then by using a

proof similar to the proofs of Proposition 5 - Proposition 7 in [26], we can prove the conclusion.

¤

Now we have the global convergence of Algorithm 1.

Theorem 5.1 Suppose that for every k ≥ 0 and εk ∈ R++, wk ∈ Ω, Φ′(wk) is nonsingular.

(i) Then an infinite sequence {wk} is generated by Algorithm 1.

(ii) Suppose that for any accumulation point w∗ = (ε∗, x∗, y∗) of {wk} with ε∗ ∈ R++, w∗ ∈ Ω,

Φ′(w∗) is nonsingular. Then each accumulation point of {wk}, denoted by ŵ, is a solution of

Φ(w) = 0.

Proof. (i) The generation of an infinite sequence {wk} can be proved by Proposition 5.1 and

the fact that w0 ∈ Ω.

(ii) From the relationship of Φ(w), β(w) in (5.7) and the line search (5.9) we have that Ψ(wk)

and β(wk) are monotonically decreasing. Moreover, for each accumulation point ŵ, Ψ(ŵ) = 0 or

Ψ(ŵ) > 0 implies β(ŵ) = 0 or β(ŵ) > 0, respectively. So from Ψ(wk+1) < Ψ(wk), there exist

Ψ̂, β̂ ≥ 0 such that Ψ(wk) → Ψ̂ and β(wk) → β̂. If Ψ̂ = 0, the conclusion is proved. Otherwise,

Ψ̂ > 0 implies that the accumulation point of {wk}, denoted by ŵ = (ε̂, x̂, ŷ) ∈ Ω, satisfies ε̂ > 0.

This means that the function Φ(w) is continuously differentiable at all iterative points wk and

the accumulation point ŵ. Then the conclusion can be proved by the way of the classical Newton

algorithm. Here we omit the detailed process of the proof. ¤

5.3 Local Convergence

Let w∗ = (0, x∗, y∗) be an accumulation point of {wk} generated by Algorithm 1 and a solution

of Φ(w) = 0, i.e., a stable solution. It is not difficult to derive that for ε > 0, the differential of

the smoothing function has the following version:

Φ′(w) =







1 0 0

0 F ′(x) 0

−dθ(ε,x)
dε + dφ(ε,y)

dε ∇xθ(ε, x)T dθ(ε,y)
dy






. (5.11)

We first have the following nonsingular property of the generalized Jacobian ∂Φ(w∗).

Proposition 5.2 Let w∗ = (0, x∗, y∗) be a stable solution. Then for the case y∗ 6= 0, every

element of the generalized Jacobian, i.e., V ∈ ∂Φ(w∗), is nonsingular.

18

Proof. It is easy to see that at the solution point w∗ = (0, x∗, y∗) with y∗ 6= 0, for any

V ∈ ∂Φ(w∗) there exist M = (Mε, Mx) ∈ ∂G(w∗) such that

V =







1 0 0

0 F ′(x∗) 0

Mε Mx αy






. (5.12)

Here

αy =







1, if y∗ > 0

−1, if y∗ < 0
. (5.13)

On the other hand, from the definition of stable solutions we know that F ′(x∗) is nonsingular.

This combines with (5.13) to obtain the nonsingularity of V . The conclusion is proved. ¤

By using a similar way of proof in [26] (see Theorem 8 in [26]), we can obtain the local

convergence of Algorithm 1.

Theorem 5.2 Let w∗ = (0, x∗, y∗) with y∗ 6= 0 be an accumulation point of {wk} generated by

Algorithm 1 and a solution of Φ(w) = 0 . Then the whole sequence {wk} is convergent to w∗.

Furthermore, we have

‖wk+1 − w∗‖ = o(‖wk − w∗‖), εk+1 = o(εk). (5.14)

Proof. From Proposition 5.2 we have that for sufficiently large k it exists a constant C such

that

‖Φ′(wk)−1‖ ≤ C.

On the other hand, the solution point w∗ means that for large enough k, it holds

β(wk) = γΨ(wk).

Then by a proof similar to those in [26] (see the proof of Theorem 8 in [26]), we can derive

that

‖wk+1 + 4wk − w∗‖ = o(‖wk − w∗‖)

and the step-length of line-search is 1. This means that

‖wk+1 − w∗‖ = o(‖wk − w∗‖).

The convergence of {wk} and the first expression in (5.14) are proved. The second conclusion in

(5.14) can be proved by β(wk) = γΨ(wk). We omit the details of the proof. ¤

Remark 5.1 In the local convergence analysis, we only consider the case that y∗ 6= 0 at the

solution w∗ = (0, x∗, y∗). Since y∗ = 0 implies h(x∗) = δ, this means that we obtain a solution

close to an unstable solution, because of the small constant δ. In this case, we can consider to

enlarge the constant δ and repeat the computation so that we may find a better stable solution

with y∗ 6= 0.

19

6 Numerical Examples

In this section, we describe three examples for testing the effects of the stability functions proposed

in Section 2 by using Algorithm 1. One example is called the Bratu Problem; the other one

is called the Beam Problem; and the third one is a Power System. We choose the Special

Case III model (see (2.9)-(2.10)) as an example to do the numerical experiments, i.e., to solve

the the system (5.1)-(5.4) with h(x) = h3(x).

The parameters used in Algorithm 1 and the stopping rule in the algorithm are chosen as

η = 0.5, α = 0.00005, ε̄ = 0.2, γ = 0.02, ‖Φ(w)‖ ≤ 10−5.

The control parameter of stable solution models (denoted by δ in (1.2)) is specialized for all

tested examples

δ = 0.0001.

6.1 Examples: The Bratu Problem and The Beam Problem

Both of the two examples are the two point bounded value problem.

Example 1: The Bratu problem . It is as follows:

F (u, α)(x) = −u′′(x) − αeu(x) = 0, for 0 < x < 1, (6.1)

subject to homogeneous Dirichlet boundary conditions

u(0) = u(1) = 0.

In (6.1), α ≥ 0 is a parameter. We consider the case that α = 3.5 and discretize the problem

by a standard second order central difference scheme with n interior nodes. Then we obtain a

nonlinear problem

F (u, α) = −
ui−1 − 2ui + ui+1

h2
− αeui = 0, (6.2)

in Rn.

It is known that the Bratu problem has two solutions, one is a stable solution and the

other is an unstable solution with maximal eigenvalues max(λi(−∇uF (u∗, α)) = −0.8695 and

max(λi(−∇uF (u∗, α)) = 0.9275, respectively. See Fig. 1.

Example 2: The Beam Problem. It is described as

F (u, α)(x) = −u′′(x) − α sin(u(x)) = 0 for 0 < x < 1, (6.3)

subject to the boundary conditions

u(0) = u(1) = 0.

20

Fig.1 Solution Curves

In (6.3), α ≥ 0 is a parameter. As the same as the Bratu problem, we discretize the problem

with a standard second order central difference scheme with n interior nodes. Then the following

nonlinear problem is obtained

F (u, α) = −
ui−1 − 2ui + ui+1

h2
− α sin(ui) = 0, (6.4)

in Rn.

It is also known that there are three solutions for the case that α = 11. One is u(x) = 0,

which is unstable.

For these two examples, F ′ is symmetric, and therefore all the eigenvalues are real. So we

just use ∇F (x) to substitute ∇F (x) + ∇F (x)T in the stable function h3(x).

By using Algorithm 1 with the chosen algorithm parameters, the numerical results are re-

ported in Table 1 for the two examples.

Table 1. Numerical Results for Bratu Problem and Beam Problem

Ex. u0 n IterN IterF IterDF y∗ ‖F (x∗, α)‖ max(λ(−∇uF ∗)) CPU(s)

100 10 13 11 0.8694 3.8511E − 12 −0.8695 0.8212

Bratu 0 ∈ Rn 200 8 11 9 0.8736 8.3365E − 10 −0.8737 2.6839

400 10 13 11 0.8746 8.8887E − 11 −0.8747 19.5982

100 14 15 15 -2.1726 3.1930E − 12 -2.1728 0.7611

Beam x(i) 200 11 13 12 -2.1716 1.7314E − 11 -2.1717 3.0243

400 10 11 11 -2.1701 7.2367E − 11 -2.1714 17.0445

where u0 is the initial point; x(i) = i/(n + 1) (i = 1, 2, · · · , n); n is the dimension of the

solved problem (i.e., the discretization number for the problem); IterN is the iterative number

21

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig 1.2 Beam Problem
The Solution, α=11

x

u

Fig.2 Solution Curves

of Algorithm 1; IerF and IterDF are the computing number of F and its derivative, respectively;

y∗ is the slack variable defined in the unconstrained equations (5.2); ‖F (x∗, α))‖ is the final value

of F ; max(λ(−∇uF ∗)) is the maximal eigenvalue of −∇uF (u∗, α); CPU(s) (second) is the cost

time to finish the calculation.

For the Beam Problem, the stopping rule is set ‖Φ(w)‖ ≤ 10−8, and the solution curve for

n = 100 is shown in Fig.2.

6.2 Example 3: A Power System

Consider a simple power system discussed in [2] as follows:

F (V, δ) =

(

−V 2G + V (G cos δ + B sin δ) − Pd

−V 2(B − BC) − V (G sin δ − B cos δ) − Qd

)

= 0 (6.5)

where the variable is x = (V, δ), others, such as BC , XCB, Pd, Qd, are given constants with

G =
R

R2 + (XL − XC)2
, B =

XL − XC

R2 + (XL − XC)2
, 0 ≤ V ≤ 2, 0 ≤ δ ≤ 2π.

and

R = 0.1, XL = 0.5.

Paper [2] discussed how to determine Pd, Qd, BC , XC to maximize the distance to saddle-node

bifurcation. Here we just consider how to find a stable solution for (6.5).

According to the data proposed in [2], we consider two cases for different constants BC , XC , Pd, Qd.

This also means that we consider two systems of equations.

22

Case I: The parameters in equations are specialized as

BC = 0.0, XC = 0.0, Pd = 0.6661, Qd = 0.1665.

We choose various initial points for the system (5.1)-(5.4) with h(x) = h3(x). However,

Algorithm 1 fails to find a solution. This shows that the problem may have no stable solution.

Case II: The parameters in equations are specialized as

BC = 1.17424, XC = 0.48809, Pd = 2.4, Qd = 0.01

By using Algorithm 1 with the stopping rule ‖Φ(w)‖ ≤ 10−7, we find the same solution from

two different initial points, which are used in the computation in [2]. The computing results are

reported in Table 2.

Table 2. Numerical Results for PS Example with Case-II

x0 IterN IterF IterDF x∗ y∗ ‖F (x∗)‖ λ(−∇uF (x∗)) CPU(s)
(

5

1

)

12 14 13
(

0.6042

0.1169

)

1.9858 7.4593E − 017
(

−1.9859

−6.0000

)

0.4006
(

4.7830

0.7358

)

14 17 15
(

0.6042

0.1169

)

1.9856 7.8063E − 017
(

−1.9859

−6.000

)

0.5007

The symbols in Table 2 have the same meaning as Table 1. We also find a stable solution for

different initial points. For the two cases of the power system, we find a stable solution for one

case; another one may have no stable solution.

The computing results show that the stable solution models and the smoothing Newton

approach are effective. Moreover, for the three examples, the solution of y satisfies y∗ 6= 0. This

confirms the local convergence result of Algorithm 1 in Section 5.

7 Final Comments

In this paper, we presented a new mathematical problem based upon engineering applications –

Finding a stable solution for a system of nonlinear equations. Two stable solution models and

three stability functions are proposed. The semismooth property and smoothing functions of such

stability functions are investigated. Smoothing Newton methods for solving such stable solution

models are discussed, and the convergence of the algorithm is studied. Three examples are given

to show that our models and the three stability functions we proposed, as well as the smoothing

Newton algorithm, are practically useable. Further research on larger examples will be the next

step of our research.

Acknowledgment. The authors would like to thank Michael Tse for the discussion.

23

References

[1] F. Alvarado, I. Dobson and Y. Hu, “Computation of closest bifurcations in power systems”,

IEEE Trans. Power System 9 (1994) 918-928.

[2] C.A. Cañizares, “Calculating optimal system parameters to maximize the distance to saddle-

node bifurcation points”, IEEE Trans. Circuits and System 45 (1998) 225-237.

[3] C.A. Cañizares and A. J. Conejo, “Sensitivity-based security-constrained OPF market clear-

ing model”, IEEE Transactions on Power Systems 20 (2005) 2051-2060.

[4] X. Chen, H.-D. Qi, L. Qi and K.-L. Teo, Smooth convex approximation to the maximum

eigenvalue function, J. of Global Optimization 30 (2004) 253–270.

[5] X.J. Chen, L. Qi, and D. Sun, Global and superlinear convergence of the smoothing

Newton method and its application to general box constrained variational inequalities, Math-

ematics of Computation 67 (1998) 519–540.

[6] H.D. Chiang, I. Dobson and R.J. Thomas, “On voltage in electric power systems”, IEEE

Trans. Power Systems 5 (1990) 601-611.

[7] J.E. Dennis and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and

Nonlinear Equations, SIAM, Philadelphia, 1996.

[8] I. Dobson, “An iterative method to compute the closest saddle node or Hopf bifurcation in

multidimensional parameter space”, Proceedings of the IEEE International Symposium on

Circuits and Systems, San Diego, 1992, 2513-2516.

[9] I. Dobson and L. Lu, “Computing an optimum direction in control space to avoid saddle

node bifurcation and voltage collapse in electric power systems”, IEEE Trans. Automatic

Control 37 (1992) 1616-1620.

[10] S.A. Gabriel and J.S. Pang, “A trust region method for constrained nonsmooth equations”,

in: Large Scale Optimization-State of the Art, W.W. Hager, D.W. Hearn and P.M. Pardalos,

eds., Kluwer Academic Publishers, Norwell, USA, pp. 155-181, 1994.

[11] C.P. Gupta, R.K. Varma and S.C. Srivastava, “A method to determine closest Hopf bi-

furcation in power systems considering exciter and load dynamics”, Proceedings of ’Energy

Management and Power Delivery Conference 1998 (EMPD’98), Singapore, 1998, 293-297.

[12] C. Kanzow, “Strictly feasible equation-based method for mixed complementarity problems”,

Numer. Math. 89 (2001) 135-160.

24

[13] C. T. Kelley, Iterative Methods for Linear and Nonlinear Equations, no. 16 in Frontiers

in Applied Mathematics, SIAM, Philadelphia, 1995.

[14] C. T. Kelley, Iterative Methods for Optimization, SIAM, Philadelphia, 1999.

[15] C. T. Kelley, Solving Nonlinear Equations with Newton’s Method, no. 1 in Fundamentals

of Algorithms, SIAM, Philadelphia, 2003.

[16] P. Kundur, J. Paserba, V. Ajjarapu, G. Andersson, A. Bose, C. Canizares, N. Hatziargyriou,

D. Hill, A. Stankovic, C. Taylor, T. V. Cutsem and V. Vittal, “Definition and classification

of power system stability”, IEEE Transaction on Power Systems 19 (2004) 1387-1401.

[17] A.S. Lewis, “Derivatives of spectral functions”, Mathematics of Operations Research 21

(1996) 576-588.

[18] A. Lewis and M. Overton, “Eigenvalue optimization”, Acta Numerica, 5 (1996) 149-190.

[19] Y. Ma, H. Kawakami and C. K. Tse, “Bifurcation analysis of switched dynamical systems

with periodically moving borders”, IEEE Transactions on Circuits and Systems 51 (2004)

1184–1193.

[20] Y.V. Makarov, Z.Y. Dong and D.J. Hill, “A general method for small signal stability anal-

ysis”, IEEE Transaction on Power Systems 13 (1998) 979-985.

[21] J. Nocedal and S. J. Wright, Numerical Optimization, Springer, New York, 1999.

[22] J.M. Ortega and W.C. Rheinboldt, Iterative Solutions of Nonlinear Equations in Several

Variables, Academic Press, New York, 1970.

[23] F. Oustry, “A second-order bundle method to minimize the maximum eigenvalue function”,

Math. Program 89 (2000) 1-33.

[24] H. Qi and X. Yang, “Semismoothness of spectral functions”, SIAM J. Matrix Anal. Appl.

25 (2004) 766-783.

[25] L. Qi, “Convergence analysis of some algorithms for solving nonsmooth equations”, Math.

Oper. Res. 18 (1993) 227–244.

[26] L. Qi, D. Sun and G. Zhou, ”A new look at smoothing Newton methods for nonlinear

complementarity problems and box constrained variational inequalities”, Math. Prog. 87

(2000) 1-35.

[27] L. Qi and J. Sun, “A nonsmooth version of Newton’s method”, Mathematical Programming

58 (1993) 353–367.

25

[28] L. Qi, X.J. Tong and D.H. Li, “An active-set projected trust region algorithm for box

constrained nonsmooth equations”, J. Optim. Theory Appl. 120 (2004) 601-625.

[29] D. Sun and J. Sun, “Strong semismoothness of eigenvalues of symmetric matrices and its

application to inverse eigenvalue problems”, SIAM J. Numer Anal. 40 (2003) 2352-2367.

[30] X.J. Tong and S. Zhou, “A smoothing projected Newton-type method for semismooth equa-

tions with bound constraints”, Journal of Industrial Management Optimization 1 (2005)

235-250.

[31] M. Ulbrich, “Nonmonotone trust-region method for bound-constrained semismooth equa-

tions with applications to nonlinear mixed complementarity problem”, SIAM J. Optim. 11

(2001) 889-917.

[32] X. Wu, C. K. Tse, O. Dranga and J. Lu, “Fast-scale instability of single-stage power-

factor-correction of power supplies”, IEEE Transactions on Circuits and Systems 53 (2006)

204–213.

26

