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ABSTRACT

In order to provide more physically accurate solutions to the neutron transport equation it has become
increasingly popular to use Monte Carlo simulation to model nuclear reactor dynamics. These Monte
Carlo methods can be extremely expensive, so we turn to a class of methods known as hybrid methods,
which combine known deterministic and stochastic techniques to solve the transport equation. In our
work, we show that we can simulate the action of a transport sweep using a Monte Carlo simulation in
order to solve the k-eigenvalue problem. We’ll accelerate the solution using nonlinear diffusion
acceleration (NDA) as in [1,2]. Our work extends the results in [1] to use Monte Carlo simulation as the
high-order solver.
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1. INTRODUCTION

We are interested in computing the dominant eigenvalue/eigenvector pair for the neutron transport
criticality problem. In general, we write the eigenvalue problem as

Ax = λx (1)

in which A is a linear operator whose spectrum is the set of eigenvalues {λi}Ni=1 with corresponding
eigenvectors {xi}Ni=1. We further assume that these eigenvalues have been ordered such that
|λ1| > |λ2| > · · · |λN | so that (λ1, x1) is the dominant eigenpair.

Traditional deterministic methods are modeled around the power method (or power iteration) in which
successive applications of A to some initial vector x0 converge to the dominant eigenvector. It can easily
be shown [1,3,6] that the rate of convergence of the power method depends on the dominance ratio
ρ = |λ2|/|λ1|. For many reactor problems, ρ can be very close to one and convergence may become
prohibitively slow.
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In recent years, many algorithmic advances have succeeded in accelerating the convergence of the
dominant eigenvalue [1,3,7–9]. These methods for accelerating convergence include moment-based
acceleration and rewriting the k-eigenvalue problem as a system of nonlinear equations for which we can
apply known mathematical techniques for solving. These moment-based algorithms compute angular
moments of the transport equation to reveal a low-order equation which exists in lower dimension. We’ll
focus primarily on these moment-based acceleration as in [1,2], extending the work of [5] to the
k-eigenvalue problem. Other work has been done in [10–12] on the topic of hybrid methods for the
k-eigenvalue problem. While within their approach, the Monte Carlo method is used to simulate scattering
with a fixed fission source coming from a low-order deterministic method, the Monte Carlo method we
employ solves a purely absorbing problem with both the fission source and scattering source coming from
a low-order deterministic method.

2. NONLINEAR DIFFUSION ACCELERATION

2.1 The Transport Criticality Problem

As in [1], we’ll consider solving the multigroup formulation of the neutron transport eigenvalue problem
with isotropic scattering,

Ω̂ · ∇ψg(Ω̂, ~r) + Σt,gψg(Ω̂, ~r) =
1

4π

 G∑
g′=1

Σg′→g
s φg′(~r) +

χg
keff

G∑
g′=1

νΣf,g′φg′(~r)

 , (2)

in which ψg is the group angular flux and φg =
∫

4π ψgdΩ is the group scalar flux for groups g = 1, · · · , G.
Σt,g, Σg′→g

s , and Σf,g are the total, inscattering and fission cross-sections for group g. χg denotes the
fission spectrum, ν is the mean number of neutrons emitted per fission event and keff is the dominant
eigenvalue.

We represent Equation 2 in operator notation,

LΨ =M
[
S +

1

keff
F
]

Φ. (3)

in which

L = Ω̂ · ∇+ Σt

M =
1

4π
S = Σs

F =
χ

keff
νΣf .

Here, Ψ and Φ are vectors comprised of the individual group angular and scalar fluxes, respectively:

Ψ = [ψ1, ψ2, · · · , ψG]

Φ = [φ1, φ2, · · · , φG].
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2.2 Acceleration via NDA

As in [1,2,5], we take the zeroth angular moment of Equation 2 and arrive at the neutron balance equation,

∇ · ~Jg(~r) + (Σt,g − Σg→g
s )φg(~r) =

∑
g′ 6=g

Σg′→g
s φg′(~r) +

χg
keff

G∑
g′=1

νΣf,g′φg′(~r) (4)

in which the current, ~J , is defined by

~Jg =

∫
4π
dΩ Ω̂ψg(Ω̂, ~r). (5)

We use the following closure relationship for the current [1,2,5]:

~Jg = − 1

3Σt,g
∇φg + D̂gφg, (6)

which is an approximation to the first angular moment.

Next we define a low order (LO) diffusion-like equation by substituting Equation 8 into Equation 4 in place
of the current:

∇ ·
[
− 1

3Σt,g
∇φg + D̂gφg

]
+ (Σt,g − Σg→g

s )φg =
∑
g′ 6=g

Σg′→g
s φg′ +

χg
keff

G∑
g′=1

νΣf,g′φg′ . (7)

We compute D̂g via a discretization of Equation 8 using high-order (HO) quantities φHOg and ~JHOg :

D̂g =
~JHOg + 1

3Σt,g
∇φHOg

φHOg
. (8)

High-order quantities are those which are computed directly via integration of the high-order angular flux,
Ψ, computed by the inversion of L, which is known as a “transport sweep,” in Equation 3 for some
approximation to the scalar flux. That is,

ΨHO = L−1M
[
S +

1

keff
F
]

Φ,

ΦHO =

∫
ΨHOdΩ̂,

~JHO =

∫
Ω̂ΨHOdΩ̂.

We will express Equation 7 in operator notation,

DΦ = (SU + SL)Φ +
1

keff
FΦ, (9)
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in which D is the drift-diffusion operator and SU and SL are the upper and lower scattering operators,
respectively. These are given for each group by

DgΦ = ∇ ·
[
− 1

3Σt,g
∇+ D̂g

]
φg + (Σt,g − Σg→g

s )φg

(SU,g + SL,g) Φ =
∑
g′ 6=g

Σg′→g
s φg′ .

2.3 NDA Algorithms

Applying NDA to the transport criticality problem yields a set of algorithms in which we alternate between
executing a single HO transport sweep in order to compute group consistency terms (D̂g) and solving LO
k-eigenvalue problems. We’ll describe these methods in Algorithm 2.3.

Algorithm 2.3: NDA Method
Compute initial iterate Φ(0) and approximate eigenvalue k0 using D̂ = 0 and a fixed number of power
iterations, set outer iteration counter m = 0
while eigenvalue not converged do

Update counter, m = m+ 1.
Execute transport sweep and compute consistency term:

Ψ(m) = L−1M
(
S +

1

k(m−1)
F
)

Φ(m−1)

ΦHO =

∫
Ψ(m)dΩ̂, ~JHO =

∫
Ω̂Ψ(m)dΩ̂

D̂(m) =
~JHO + 1

3Σt
∇ΦHO

ΦHO
.

Solve the LO eigenvalue problem given by(
D − SU − SL

)
Φ(m) =

1

k
(m)
eff

FΦ(m)

for the next approximation to the eigenvalue/eigenvector pair (k(m)
eff ,Φ

(m)).
end while

In this paper, we will not concern ourselves with the method in which the LO eigenvalue problem is solved.
However, it is key to note that the eigenvalue iteration is only executed at the level of the low order
problem. There are no transport sweeps involved in the inner eigenvalue iteration. In [1], the authors
discuss two methods for solving the LO eigenvalue problem. The first of these methods is a basic shifted
power iteration and the second method relies on writing the LO eigenvalue problem as a nonlinear system
of equations and solving using Newton’s method. Both of these methods can converge in very few
iterations. The authors of [1] demonstrate that posing the problem as a nonlinear system of equations may
be advantageous.
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3 HYBRID METHODS FOR NEUTRON TRANSPORT

In Algorithm 2.3 we must invert L at each iteration in order to update the group consistency term, D̂g, for
each group. Previous work using NDA-based acceleration of the k-eigenvalue solution has only considered
computing the transport sweep using deterministic methods. Instead, let us consider building these
consistency terms using a Monte Carlo transport sweep as in [5].

This transport sweep will be executed as described in Algorithm 3. First, we’ll use the current
approximation to the scalar flux to build a scattering- and fission-free fixed-source problem. Then, we use a
Monte Carlo simulation to compute a HO scalar flux and current. Using these quantities, we’ll be able to
compute the group consistency terms.

Algorithm 3: Monte Carlo Transport Sweep
Input current approximation to the scalar flux Φ(m−1)

Build a scattering and fission-free fixed source probelm:

LΨ = Q (10)

where

Q =M

S +
1

k
(m−1)
eff

F

Φ(m−1)

Use Monte Carlo simulation to solve Equation10 and tally ΦHO, ~JHO.

We should make sure to note the low-cost nature of this Monte Carlo transport sweep. In general Monte
Carlo simulations, we must sample probability distributions at each neutron interaction site to determine
whether the interaction resulted in scattering, fission or capture. In these computations, we must keep track
of fission sites for future generations of neutrons and continue tracking scattered particles. In our simplified
simulation, we need only note the location of the interaction and tally the scalar flux and current along the
single flight path from the particles birth location to the interaction site.

4 1-D, 1-GROUP TEST PROBLEMS AND RESULTS

4.1 Implementation Details

As in [5], we understand that at the initial phase of the iteration, it is not necessary to compute the scalar
flux and current to extremely high accuracy. For this reason, at the beginning of the iteration, we start with
a relatively small number of particles, 106 particle flights per transport sweep. At each successive outer
iteration we increase the number of particles per simulation by a factor of 2. In practice, this allows us to
gain increasingly accurate approximations to the eigenvalue and eigenvector without wasting effort in early
sweeps. As we approach the eigenvalue/eigenvector pair, the necessity to compute these values accurately
increases.
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The factor used to increase the number of particles should be chosen with a couple of considerations in
mind. We need to use enough particles at the initial stage of the algorithm so that our approximations to the
scalar flux and current are meaningful. Furthermore, by the end of the iteration process, we need only gain
enough accuracy to compute the eigenvalue to the desired tolerance. If we expect it will require on order
1010 particles to gain the accuracy we desire, we should chose a factor so that 1010 particles per simulation
is achieved in roughly the same number of iterations that it will take to converge the eigenvalue to these
tolerances. In other words, we don’t want to execute simulations with far more particles than are needed to
achieve the desired level of accuracy.

Furthermore, we chose to use the NDA-NCA [1] algorithm in which the LO eigenvalue problem is solved
using Newton’s method. In this case, the consistency term D̂ is held constant throughout the LO eigenvalue
solve, so the issues which arose in [5] can safely be ignored. For this paper, the choice between these two
algorithms is arbitrary, as the goal of our work focuses strictly upon the computation of the consistency
term within the outer iteration.

4.2 Numerical Results

We will consider two 1-D, 1-Group test problems to demonstrate the effectiveness of this algorithm. Both
Test 1 and Test 2 below consist of a single fissile region surrounded by two 5 mean-free-path reflectors
[12]. The length of the medium is given by τ , and the length of the fissile region is given by τ − 10.

Consider the parameters for the first test:

Σt = 1 Σs = .856 νΣf = .144 τ = 35 (fissile region)

Σt = 1 Σs = .856 νΣf = 0 τ = 35 (reflector region)

For this problem, we found the true eigenvalue to be keff = .9720469427, computed using a high accuracy
Sn computation. We’ll run the simulation 10 times in order to gauge performance. For each simulation
we’ll discretize using 7000 spatial cells and a total of roughly 3.28× 1010 particle flights (15 outer
iterations). After 10 independent simulations we collect the following results for keff :

• Mean = .9720469297

• Standard deviation = .0000028874

• Max eigenvalue = .9720577602 (.001866% error)

• Min eigenvalue = .9720420155 (.001850% error)

Consider the parameters for the second test:

Σt = 1 Σs = .856 νΣf = .144 τ = 60 (fissile region)

Σt = 1 Σs = .856 νΣf = 0 τ = 60 (reflector region)
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For this problem, the true eigenvalue is keff = .9919893631. We’ll run the simulation 10 times in order to
gauge performance. For each simulation we’ll discretize using 12000 spatial cells and a total of roughly
3.28× 1010 particle flights (15 outer iterations). After 10 independent simulations we collect the following
results for keff :

• Mean = .9919892935

• Standard deviation = .0000011455

• Max eigenvalue = .9919907012 (.000142% error)

• Min eigenvalue = .9919875238 (.000178% error)

5. CONCLUSIONS

We have shown that we can compute the dominant eigenvalue for transport criticality problems by
replacing the transport sweep in NDA-based algorithms with a Monte Carlo simulation. These Monte
Carlo simulations are less computational effort than traditional Monte Carlo simulations. By moving the
scattering and fission operators to the LO system, these simulations need only simulate particle flights from
particle birth location to the site of their first interaction.
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