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Abstract
A new model for studying the behavior of nanoscale tunneling de-
vices has been developed in C++ using the Wigner-Poisson formula-
tion. This model incorporates the parallel solvers of Sandia National
Lab’s Trilinos software with the efficient use of parallel data struc-
tures to create a code that scales well to a high number of processors.
It also incorporates non-uniform meshes to discretize the solution
space and higher order numerical methods to reduce simulation run
times and increase numerical accuracy. The improvements inherent
in the new C++ model will improve the quality of numerical simu-
lations, and allow longer and more complex nanoscale devices to be
modeled.

1. INTRODUCTION
Over the past few decades, electronic devices have become

smaller, and the functional demands placed on them greater. The
need for efficient micro and nanoscale components to power these
devices is immediate, and a variety of research on simulating these
ultra-small devices has been undertaken. One such nanoscale de-
vice that has the potential to be used as a power source for devices
on the micro and nanoscales is the resonant tunneling diode (RTD).
RTDs have numerous characteristics that make them interesting to
study, and their high speed operation makes them candidates for
use as components in high-speed electronic devices. Various mod-
els have been developed to study their behavior using both classical
and quantum mechanics [1–5]. One of the main models that properly
incorporates the quantum effects inherent in these nanoscale devices
is the Wigner-Poisson formulation [6–22, 24].

The Wigner equation [25] is an integro-differential equation for
which a solution cannot be computed analytically, so numerical
techniques must be used [26]. The Wigner equation is often cou-
pled with the Poisson equation [6] to account for potential effects
in the device. Solving the non-linear Wigner equation using a tra-
ditional Newton method is extremely difficult, since the Jacobian
is dense and requires significant memory usage as finer grids are
implemented. Previous attempts to model resonant tunneling behav-
ior using the Wigner-Poisson formulation have produced simulation
results with either a low degree of computational accuracy or sim-
ulation run times that are unreasonably long [12–24]. The goal of

this work is to develop a research model that will produce simula-
tion results with a high degree of numerical accuracy combined with
reasonable run times, so that a larger variety of devices can be mod-
eled.

This paper will present details of a new Wigner-Poisson model
we have written in C++ and built with the Trilinos [27] package. The
use of Trilinos allows a distributed memory implementation without
explicit use of MPI message passing. The new model uses higher or-
der numerical methods than previous FORTRAN versions, and im-
proves run times over previous parallel implementations by the use
of a new non-uniform grid structure. We also improved upon previ-
ous scalability results by effectively partitioning the solution vector
into two different formats rather than one, allowing every piece of
the Wigner and Poisson equations to be computed in parallel.

1.1. Resonant Tunneling Diode Structure
Resonant tunneling diodes have been studied for over 30 years

[7, 28–30] due to their interesting physical characteristics and their
potential device applications. They have response times on the order
of picoseconds and high frequency output (on the order of THz),
but their ability to produce negative differential resistance led to an
increase in research on these devices.

Negative differential resistance is the effect of quantum tunneling
in the middle of the device that allows current to flow more freely
in proportion to an increase in voltage, up to a certain critical volt-
age value. As the voltage is increased past the critical value, quan-
tum effects bar the passage of electrons between the semiconductor
materials in the well, and the corresponding current values decrease
drastically down to a relative minimum before increasing again. This
effect is seen experimentally for voltage changes in both directions:
voltage increases (from V = 0 to a critical value VI) and decreases
(from beyond a critical value V = VD down to 0) where VI > VD.
Plotting the steady-state current-voltage relationship shows multiple
values for the current in the voltage range V ∈ (VD,VI). This effect
is called hysteresis, and this behavior should be present in RTD sim-
ulations in order for a numerical model to be valid. (See figure 5 in
section 3. that shows these hysteretic effects are present in the RTD
simulation model results.)

The structure of a typical RTD incorporates two different types of
semiconductor materials with differing energy band gaps to create a
quantum well in the center of the device. A large region at each end
of the device is infused with dopants to facilitate current flow when a
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voltage is applied across the device. The material parameters shown
in figure 1 are those used for the numerical simulations discussed in
this paper.

Figure 1. Sample material parameters and device structure for a
two barrier resonant tunneling diode.

1.2. The Wigner-Poisson Equations
The Wigner equation models electron transport and is used along

with Poisson’s equation as a method to approximate device behavior.
The RTD is modeled as a two-dimensional system, with a spatial
dimension and a momentum dimension. The Wigner equation is

∂ f
∂t

=W ( f ) = K( f )+P( f )+S( f ) (1)

where f = f (x,k, t) is the distribution of electrons in the device, x is
the spatial parameter, k is the momentum parameter, and t represents
time. The components of the Wigner equation are K( f ), which rep-
resents the kinetic effect of the electrons in the device; P( f ), which
models the potential energy effects inside the device; and S( f ), the
scattering term, which takes into account the interactions between
electrons within the device. The kinetic term K( f ) is

K( f ) =− hk
2πm∗

∂ f (x,k, t)
∂x

(2)

where h is Planck’s constant and m∗ is the effective mass of an elec-
tron in the device. The potential term is

P( f ) =−4
h

∫
∞

−∞

f (x,k′, t)T (x,k− k′, t)dk′ (3)

with

T (x,z, t) =
∫ Lc

2

0
[U(x+ y, t)−U(x− y, t)]sin(2xz)dy. (4)

In T (x,z, t), Lc is called the correlation length of the device and
satisfies Lc ≤ L, where L is the total device length. The correlation
length represents the maximum distance that an electron feels the

effects of other electrons in the device. U(x, t) is the potential energy
and can be written as

U(x, t) = ∆c(x)+up(x, t) (5)

where ∆c(x) is the time-independent energy band function defined
by the barriers in the device, and up(x, t) is the electrostatic potential,
which is the solution to Poisson’s equation

∂2up(x, t)
∂x2 =

q2

ε
[Nd(x)−n(x, t)]. (6)

In Poisson’s equation, q represents the charge on an electron; ε is
the dielectric constant of the primary semiconductor material; Nd(x)
is the concentration of the ionized dopants in the device (assumed
to be time-independent); and n(x, t) is the electron density in the
device, defined by

n(x, t) =
∫

∞

−∞

f (x,k, t)dk. (7)

Poisson’s equation imposes boundary conditions to account for
the voltage change V across the device:

up(0, t) = 0, up(L, t) =−V. (8)

Finally, the last term in the Wigner equation is the scattering term
S( f ), defined from the first-order relaxation time approximation [8]
as

S( f ) =
1
τ

[ ∫ ∞

−∞
f (x,k, t)dk∫

∞

−∞
f0(x,k)dk

f0(x,k)− f (x,k, t)
]

(9)

where τ is the relaxation time constant for the semiconduc-
tor material, and f0(x,k) is the initial Wigner distribution at
V = 0 and is assumed to be time-independent.

The Wigner equation also has boundary conditions imposed
which depend on the sign of the momentum:

f (0,k) =
4πm∗kBT

h2 ln
{

1+ e
− 1

kBT

(
h2k2

8π2m∗
−µ0

)}
, k > 0 (10)

f (L,k) =
4πm∗kBT

h2 ln
{

1+ e
− 1

kBT

(
h2k2

8π2m∗
−µL

)}
, k < 0 (11)

where kB is Boltzmann’s constant, T represents the temperature of
the device, and µ0 and µL are the fermi energies at each end of the
device.

1.3. Previous Versions
Earlier versions of the Wigner-Poisson model [9, 14] were writ-

ten in FORTRAN and used second-order numerical approximations
to simulate device performance. Due to computational limitations
of the hardware available at the time, these versions only used
very coarse grids, which limited numerical accuracy. A later ver-
sion of the FORTRAN code [19–22] incorporated the Trilinos soft-
ware [27], which was a significant enhancement over previous ver-
sions. Trilinos’ parallel capabilities and more advanced solver meth-
ods significantly decreased run times, which in turn allowed finer
grids to be used.

However, low-order numerical methods continued to limit com-
putational accuracy. In addition, the uniform grids used by the FOR-
TRAN model limited how far the mesh could be refined if reason-
able run times were desired. Even for a large number of processors
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(over 100), run times could stretch from hours into weeks as the
grids grew progressively finer.

For a large portion of the domain, the Wigner function f ≈ 0.
This can be seen in figure 2, which shows a sample Wigner dis-
tribution function f with zero bias applied across the device. For
|k| ≥ 0.15Å−1, f ≈ 0. Thus, when a uniform grid is used, a large
percentage of the calculations to compute the solution to the Wigner
equation provides no meaningful information.
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Figure 2. Zero bias Wigner distribution for a 550 Å device.

A more recent version of the Wigner-Poisson model [24], writ-
ten in MATLAB, attempted to fix this limitation by employing non-
uniform grids to discretize the domain. The MATLAB code also in-
corporated higher-order numerical methods and solved several in-
tegrals analytically to increase numerical accuracy. These improve-
ments reduced run times significantly over the FORTRAN version
and allowed finer grids to be simulated. However, the MATLAB
code is serial and limited to specific device types, so a newer ver-
sion of the Wigner-Poisson model was needed.

1.4. New C++ model
Thus, we have written a new Wigner-Poisson model in C++ that

includes the higher-order numerical methods and analytical solu-
tions from the previous MATLAB code, along with parallel com-
putation and a new non-uniform grid implementation to decrease
run times significantly as compared to all previous versions of the
Wigner-Poisson formulation. Unlike previous parallel implementa-
tions [19–22] which applied the preconditioner serially, the new C++
model parallelizes every piece of the Wigner and Poisson equations.
This required discretizing the solution vector in two separate ways
and coordinating the transfer of data between the two discretizations,
which resulted in improved scalability over the previous parallel ver-
sions.

The Trilinos software [27], developed by Sandia National Lab-
oratories, was incorporated into the C++ model to solve the non-
linear Wigner equation due to the variety of capabilities it includes,
such as flexible parallel data structures, non-linear solvers and con-
tinuation. Also incorporated is the interpolation package from Al-
glib [31], an open-source numerical analysis library that supports

several programming languages, including C++. Alglib interpola-
tion handles conversions from a non-uniform grid to a uniform grid,
and was chosen due to its ease of implementation and ability to be
compiled across multiple Unix and Linux platforms.

1.5. Numerical Discretizations
Since the coupling of the Wigner equation with Poisson’s equa-

tion yields a complex system which cannot be solved analytically,
appropriate numerical methods must be employed to solve the sys-
tem and produce a physically realistic numerical solution.

1.5.1. Discretization of the domain
The momentum domain is truncated from (−∞,∞) to

(−Kmax,Kmax), where Kmax is chosen such that for |k| > Kmax,
f (x,k, t) ≈ 0 for all x, t. For the simulations discussed in this paper,
we have used Kmax = 0.25 Å. This choice is based on earlier
work [19, 26] and is validated by figure 2, which demonstrates for
|k|> 0.15 Å, f ≈ 0.

Next, the non-uniform meshes for the spatial and momentum do-
main are created. We denote Nx as the number of grid points for a
uniform grid in the x dimension, and Nk as the number of grid points
for a uniform grid in the k dimension. The actual number of grid
points for the non-uniform meshes will be less than or equal to Nx
and Nk respectively.

The spatial mesh grid points (discretized into n points from x = 0
to x = L) are {0 = x1, x2, . . . , xn−1, xn = L} where n≤ Nx, and the
momentum mesh grid points (discretized into m mesh points) are
{−Kmax = k1, k2, . . . , km−1, km = Kmax} where m≤ Nk. Dropping
the time dependence for the Wigner distribution function f , we de-
note the grid points for f as fi j, 1≤ i≤ n, 1≤ j≤m where the first
index represents the spatial dimension and the second represents mo-
mentum. The details of how the non-uniform grids are created will
be discussed in section 1.5.3.

1.5.2. Discretization of the Equations
The Wigner-Poisson equations are discretized using finite differ-

ence methods and Newton-Cotes quadrature rules. Wherever possi-
ble, each term uses a fourth order approximation.

The kinetic term, K( f ) (equation 2), is approximated using a
fourth order upwinding approximation for the first derivative. For
k j > 0, it is:

K( fi j) =−
hk j

2πm∗

(
25 fi j−48 fi−1, j +36 fi−2, j−16 fi−3, j +3 fi−4, j

12∆x

)
(12)

and for k j < 0,

K( fi j) =−
hk j

2πm∗

(
−25 fi j +48 fi+1, j−36 fi+2, j +16 fi+3, j−3 fi+4, j

12∆x

)
(13)

where ∆x depends on the size of the spatial mesh at each value of k.
However, close to the boundaries at x = 0 and x = L, there are not
enough grid points for a full fourth order stencil, so decreasing order
upwinding approximations are used.

Note that the differing approximations for the kinetic term pro-
duce a discontinuity in the solution at k = 0, so the discretization
of the momentum domain must be chosen so that k = 0 is not a
grid point. The discretization of the spatial domain can change for
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different values of k, but the mesh size ∆x at a particular k must be
constant due to the finite differencing of the kinetic term. These con-
ditions will be used to determine the non-uniform grid points, and
the specific structure of the non-uniform grids will be described in
the next section.

The potential P( f ) term (equation 3) is discretized using compos-
ite Newton-Cotes quadrature rules

P( fi j)≈−
4
h

Nk

∑
j′=1

fi j′T (xi,k j− k j′)w j′ (14)

The w j′ are the weights of the appropriate quadrature rule in each
grid region. Since k = 0 cannot be a grid point, the composite mid-
point rule is used in the mesh region in the interior of the device
around k = 0. Away from the k = 0 line, however, the grid points in
the region(s) can be chosen so that a fourth order composite Simp-
son’s rule can be implemented.

To compute T (xi,k j − k j′) (equation 4), we split the
term into two pieces so T (xi,z) = T1(xi,z) + T2(xi,z) where
z = k j− k j′ and

T1(xi,z) =
∫ Lc

2

0
[∆c(xi + y)−∆c(xi− y)]sin(2xiz)dy (15)

T2(xi,z) =
∫ Lc

2

0
[up(xi + y)−up(xi− y)]sin(2xiz)dy (16)

Since the energy band function ∆c(x) = 0 for a large portion of the
x domain, the integral T1 can be computed analytically. T2 must be
computed numerically using quadrature methods. While composite
Simpson’s rule is a preferred method, note that the upper limit of the
integrand involves Lc, which may or may not correspond to a grid
point in the spatial domain. Thus, the weights for the discretization
must be modified to take this into account.

Assume the value of Lc falls between the values corresponding to
grid points Nc and Nc +2, where Nc is even. We can divide the inte-
gral into two pieces, an integral from 0 to xNc and another from xNc

to Lc, and then use composite Simpson’s rule to approximate the in-
tegral over [0,xNc ] and Simpson’s rule for the integral over [xNc ,Lc].
To compute the weights for the integral over [xNc ,Lc], Taylor ex-
pansions are used to compute fourth order approximations to the
weights between Nc−1 and Nc +2, depending on exactly where Lc
falls in the [xNc ,xNc+2] interval. So equation (16) can be approxi-
mated as

T2(xi,z)≈
Nc+1

∑
i′=1

[
up(xi + xi′)−up(xi− xi′)

]
sin(2xi′z)wi′ (17)

where the wi′ are the modified composite Simpson’s rule weights for
1≤ i′ ≤ Nc +1, with additional fourth order weighting terms added
for Nc−1≤ i′ ≤ Nc +2.

The scattering term S( f ) (equation 9) can be discretized using
composite Newton-Cotes quadrature rules as

S( fi j)≈
1
τ

[
f0(xi,k j)

∑
Nk
j′=1 f0(xi,k j′)w j′

Nk

∑
j′=1

fi j′w j′ − fi j

]
(18)

where the w j′ are the composite midpoint and Simpson’s rule
weights as described for the P( fi j) term (equation 14).

To solve Poisson’s equation (6), we can split up(x, t) into two
pieces, up(x, t) = ua

p(x, t)+ub
p(x, t), such that

d2ua
p(x, t)

dx2 =
q2

ε
Nd(x) and

d2ub
p(x, t)

dx2 =−q2

ε
n(x, t) (19)

solve the first part of equation (19) analytically and the second part
using a finite difference approximation, and then sum the two pieces
to obtain up(x, t). This method not only saves computational time
but produces a more accurate solution. To solve the second part of
equation (19), a fourth order center difference formula is used to ap-
proximate the second derivative of ub

p(x, t) except at the end points,
where one-sided fourth order methods are used with up(x1) = 0 and
up(xn) =−V . The electron density n(x) is approximated using com-
posite Newton-Cotes quadrature:

n(xi, t)≈
1

2π

Nk

∑
j=1

fi jw j (20)

where the weights are as listed for the potential term P( f ) (equation
14).

Finally, the current density j(x) can also be approximated using
composite Newton-Cotes quadrature:

j(xi)≈
h

2πm∗

Nk

∑
j=1

k j fi jw j (21)

where the weights are again as listed for the potential term P( f )
(equation 14).

1.5.3. Non-Uniform Grids
As noted above, the discretization of the kinetic term

forces certain requirements for constructing a non-uniform
mesh in both the spatial and momentum dimensions. Namely,
(1) k = 0 cannot be used as a grid point, and (2) the spatial grid
must be uniform for a given value of k.

Since the spatial grids depend on the value of k, the discretization
of the momentum space will be constructed first, and then the spatial
grids will be determined.

Momentum non-uniform grid The non-uniform momentum grid
must contain a region symmetric about k = 0 that does not include
k = 0. The size of this region is minimized so that the impact of the
error associated with the second order quadrature rule is minimized.

The remaining momentum regions are symmetric about
k = 0. The grid spacing ∆k in an interior (closer to k = 0) region
is equal to 1

2 the grid spacing in the adjacent exterior (away from
k = 0) region. The k grid points are assigned to each region to mini-
mize the total number of grid points without sacrificing accuracy of
the solution.

Spatial non-uniform grid Once the momentum regions are cho-
sen, the spatial grids are determined for each momentum region
based on similar rules: (1) a minimum number of spatial grid points
per region is chosen, (2) each spatial region must include at least
the minimum number of k grid points, and (3) the mesh spacing ∆x
for an interior grid region equals 1

2 the grid spacing in the adjacent
exterior region.

Note that for a single momentum region, it is possible to have
two different spatial grid regions if there are a large number of k
grid points in the momentum region.

776



An example of the non-uniform mesh is given in figure 3.
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Figure 3. Example of the C++ model non-uniform grid.

1.6. Solution Method
To begin the simulation, an initial guess is made for the Wigner

distribution function f at V = 0, which is then fed to the nonlin-
ear solver package NOX to compute the initial Wigner distribution
function f0. To compute the steady-state simulation and produce a
current-voltage (I-V) curve, continuation on the voltage parameter
V is used to compute f for various values of the voltage from V = 0
to V = 0.45.

2. PARALLEL IMPLEMENTATION
One goal of the C++ Wigner-Poisson model is to decrease run

times by using parallel computation. We used three approaches: (1)
use of the Trilinos software; (2) balanced allocation of vectors across
processors; and (3) parallel computation of terms in the Wigner and
Poisson equations.

2.1. Trilinos Software
The Trilinos software [27] offers many parallel packages that al-

low the user to distribute computations without having to explicitly
use MPI message passing calls. We used version 10.6.0, which was
released in September 2010 and includes 48 packages. The primary
packages incorporated in the Wigner-Poisson model were Epetra
(data structures), Amesos (direct solvers for sparse matrices), NOX
(non-linear solvers), and LOCA (continuation methods).

Epetra: Epetra is the core linear algebra package upon which sev-
eral other packages are based. The Epetra data structures are de-
signed to efficiently use BLAS and LAPACK routines while sim-
plifying parallel computation. Thus, most of the vector and matrix
elements used by the C++ model were defined using Epetra data
structures.

Amesos: The Amesos package provides a variety of sparse direct
solvers [32] which can be used for Poisson’s equation, and a serial
implementation proved to be the most efficient method due to the
relatively smaller problem size.

NOX: The NOX package uses Newton’s method to solve non-
linear equations, and provides line search and trust region methods

as well as exact and inexact Newton methods to tailor the choice of
algorithm. In addition, Jacobians can be evaluated via several finite
differencing methods or via a Jacobian-free implementation, the lat-
ter of which was used in the Wigner-Poisson code due to the dense
nature of the Jacobian.

LOCA: The continuation package LOCA [33, 34] is built using
the non-linear solver package NOX and provides both natural and
arc length continuation methods [35] as well as the ability to lo-
cate and track several types of bifurcations. For the Wigner-Poisson
model, hysteretic effects are present in the I-V curve [36, 37], so
LOCA uses an arc length continuation method to choose the voltage
step.

2.2. Parallelization of the Wigner vector
For a non-uniform grid in both space and momentum as described

in section 1.5.3. (see figure 3 for an example), the number of x grid
points corresponding to each value of k (and visa versa) will change
depending on the value of k (or x). Thus care must be taken to bal-
ance the number of calculations (i.e., total grid points) assigned to
each processor.

The solution vector f is partitioned in two ways, once across k,
and separately across x. Due to the discretization of the equations,
the vector f partitioned across k is used to compute the kinetic term
(equations 12 and 13), with the other partitioning ( f across x) used
in preconditioning and also for internal portions of the potential term
(equations 14 through 17). Cross-processor communication is nec-
essary to switch from one set of partitioning to the other, but this
takes place only once per computation of the Wigner function. The
efficiency of performing all major calculations in parallel outweighs
the additional communication time.

A standard method for distributing elements across processors is
to allocate the elements evenly, with any remainder allocated to the
first processors. However, this method may lead to additional cross-
processor communication as neighboring elements in the grid end
up on different processors. This can be seen in figure 4, where the
left picture shows how the grid points associated with the k4 and
k5 values end up on two different processors. Thus, to partition f
across each grid efficiently, we allocated the elements so that no
cross-processor communication was necessary, while keeping the
total number of grid points on each processor as balanced as pos-
sible.

To parallelize over k, we calculated an average number of total
grid points per processor, and then allocated the k grid points to each
processor so that the total number of associated x grid points would
be as close to the average as possible. The right picture of figure 4
demonstrates not only the lack of cross-processor communication,
but also an even distribution of elements. A similar method is em-
ployed to distribute the Wigner vector over the x grid. This rounding
method based on the total grid points in the solution domain (rather
than just the number of k or x grid points) ensures that the number
of calculations will be as balanced as possible across processors.

2.3. Efficient Parallel Code
Conversions between the momentum k and x space parallel forms

of the Wigner function f are necessary but minimized in the com-
putation of W ( f ) = 0. NOX and LOCA use the distributed (over k)
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Figure 4. A sample non-uniform grid allocated across processors.
The figure on the left represents an allocation that leads to additional
cross-processor communication; the figure on the right demonstrates
a more balanced distribution.

vector f to locally compute successive f iterates.
Equation (15) and the interior portion of equation (16) involv-

ing only the sine term are computed and stored for later use. As the
meshes are refined and the overall problem size becomes exceed-
ingly large, memory limitations may increase run times if too much
information is stored on each processor, so these terms as well as
most components of W ( f ) = 0 are computed in parallel. The solu-
tion to Poisson’s equation, due to the small problem size, is com-
puted on each processor.

3. NUMERICAL RESULTS
We tested the accuracy, speed and scalability of the C++ code.

Simulation runs were performed on a 240 processor cluster at
the NCSU High Performance Computing Center. Quad core Xeon
blades were used with Infiniband switches, along with Intel compil-
ers for optimum performance. Trilinos version 10.6.0 was incorpo-
rated into the C++ code along with Alglib version 3.6.0.

To ensure the accuracy of the C++ model, we compared steady
state I-V curves for the previous FORTRAN and MATLAB codes
against the C++ model to determine whether the hysteretic effects
seen in previous versions between V ≈ 0.25 and V ≈ 0.30 were still
present. The agreement between the solution curves is very close,
especially between MATLAB and C++. The largest difference be-
tween the MATLAB and C++ curves is due to the more stringent
parameter settings for the C++ code, which limited the voltage step
size for the continuation, revealing greater detail. Note that the cur-
rent vs. voltage curve can be expressed neither as a function of cur-
rent nor of voltage, nor do tangent lines appear to exist at all points
of the curve. See figure 5.

Simulation run times for the C++ code were compared against
those for FORTRAN, MATLAB, and the uniform grid C++ model
to determine how much the incorporation of non-uniform grids im-
proved computation time. For the parallel FORTRAN model, the
decrease in run times using the same number of processors was sig-
nificant (see table 1 for an example). The MATLAB code is a highly
efficient serial code, and while run times were lower for the non-
uniform MATLAB code (on the order of ≈ 15 hours) than for the
serial non-uniform C++ code (on the order of≈ 45 hours), the ability
to increase the number of processors allows the C++ code to return
results more quickly by choosing an appropriate number of cores.
And for the C++ code comparison, although the incorporation of a
non-uniform spatial grid requires interpolation for the Wigner vector
not required with a uniform grid, the decreased number of computa-
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Figure 5. Comparison of I-V curves using the FORTRAN, MAT-
LAB, and C++ models.

tions more than offsets the addition of the interpolation. The results
shown in table 2 for different mesh sizes demonstrate these results
were not grid-dependent.

TABLE 1 – FORTRAN vs C++
No. Grid Time (hr:min) % Reduction

Procs Nk Nx FORT C++ Time Grid Pts
20 512 513 17:17 2:52 83.4 90.4

TABLE 2 – Uniform vs Non-uniform C++
No. Grid Time (hr:min) % Reduction

Procs Nk Nx Unif NonU Time Grid Pts
48 512 513 5:39 1:44 69.3 90.4
24 256 257 1:11 0:22 69.0 85.2

We also analyzed the scalability of the C++ model. The study
shown in figure 6 demonstrates the strong scalability of the C++
code for simulation runs using a fine mesh of Nx = 513, Nk = 512
with the number of processors increased from 2 up to 64. Using 2
processors as a base, the speedups calculated from the simulation
runs show very good adherence to Amdahl’s law

speedup =
1

α+
(1−α)

P

(22)

where α represents the amount of serial code and P the number of
processors.

Additional studies were run with much finer grids to determine
if Amdahl’s law continues to be accurate in predicting the speedup
of the C++ code as the problem size is increased. The results in
figure 7 using a very fine mesh of Nx = 1025, Nk = 2048 and 8
processors as a base show that adherence to Amdahl’s law is still
good, although superlinear convergence is noted when the number
of processors used is less than 32. This most likely indicates that
the size of the problem exceeds efficient memory capabilities of the
blades, and that larger numbers of processors should be used for
very fine meshes. We feel there is room for improvement and are
examining trade-offs between redundant calculations and lessened
global communications.
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Figure 6. Ideal vs. computed speedup (using 2 processors as a
base) for a fine mesh of Nx = 513, Nk = 512. The maximum speedup
is around 28, achieved at 64 processors.
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Figure 7. Ideal vs. computed speedup (using 8 processors as a
base) for a fine mesh of Nx = 1025, Nk = 2048. The maximum
speedup is around 83, achieved at 160 processors.

4. CONCLUSIONS AND FUTURE WORK
A more efficient Wigner-Poisson model has been developed

in C++ that effectively utilizes parallel computation, non-uniform
meshes, and higher order numerical methods to produce solutions
that are more numerically accurate and have decreased run times
as compared to previous versions. Using different partitioning to
solve the Wigner equation, along with the incorporation of the Trili-
nos data structures and highly efficient solvers, results in a research
model that scales well.

Further work is in improving scalability to allow efficient use of
thousands of processors. Also, this code will allow additional flex-
ibility in the types of device structures being modeled, which pro-
vides more insight into the design and behavior of nanoscale tunnel-
ing devices. Possible future work includes modeling longer device
lengths similar to or exceeding those in [24] as well as multiple bar-
rier structures similar to those in [23].
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