3.5
X 104

Permanent Rights, Ny

2.5

5000

Options, NO

o)
o
—

X

11

Guide for imfil Version 1.0

)

Users

C. T. Kelley

Version of May 29, 2011
Copyright (©2011 by C. T. Kelley

Implicit Filtering: Users’ Guide

Preface

Contents

How to Get the Software

1

Getting Started with imfil.m

1.1
1.2

1.3

1.4
1.5

1.6

Computing Environment and Installation
What imfilm doeso o

1.2.1 Constraints
1.2.2 The Budget for the Iteration
1.2.3 The Objective Function
BasicUsage
1.3.1 Termination

A Very Simple Example
Setting Options

1.5.1 Nonlinear Least Squares
1.5.2 Parallel Computing
1.5.3 Scaling f
1.54 Changing the Scales
1.5.5 Looking at the Iteration History
1.5.6 Scale-Aware Functions

Passing Data to the Function

Using imfil.m

2.1
2.2

2.3

Installation and Testing

Input
2.2.1 The Initial Tterate
2.2.2 The Input Function £
2.2.3 The Budget
2.24 The Bounds
Output and Troubleshooting
2.3.1 The histout array
2.3.2 The complete_history Structure

2.3.3 Slow Convergence or No Convergence

vii

© 00 O Tk W W ==

— = =
W W NN O

13

Contents

2.4 Setting Options 19
2.5 The Inner Iteration 20
2.5.1 Scaling f with fscale 20
2.5.2 Quasi-Newton Methods for General Problems 21
2.5.3 Nonlinear Least Squares 21
2.5.4 Which best point to take? 21
2.5.5 Limiting the Quasi-Newton Step 22
2.6 Managing and Using the Scales 22
2.6.1 Scalestart and Scaledepth 22
2.6.2 custom.scales 23
2.6.3 Scale-Aware Functions 23
2.6.4 Smooth Problems 23
2.7 Parallel Computing 24
2.8 Passing Datato f o 24
2.9 Stencils 25
2.9.1 vstencil Lo o 25
2.9.2 random stencilo 25
2.10 Terminating The Outer Iteration 25
2.10.1 target 26
2.10.2 stencildelta 26
2.10.3 functiondelta 26
2.104 maxfail L L 27
2.11 Terminating the Inner Iteration 27
2.11.1 maxit 27
2.11.2 maxitarm 27
2.11.3 Noise-Aware Functions and the svarmin Option . . 27
2.114 Terminating the quasi-Newton Iteration with termtol 28
212 wverbose e 28
Advanced Options 29
3.1 Adding New Directions to the Stencil 29
3.2 The iteration_data Structure 32
3.2.1 Internal Scaling and f_internal 32
3.3 Updating the complete history Structure 34
3.4 Testing More Points with the Explore_Function Option 35
3.4.1 Random Search Example 36
3.5 The Executive Function 40
3.5.1 Input to the Executive Function 41
3.5.2 Output from the Executive Function 41
3.5.3 Levenberg-Marquardt Example 42
Parameter Identification Example 43
4.1 Problem Formulation 43
4.1.1 Calling imfil.m and Looking at Results 46
4.2 Parallelism 48

4.2.1 Parallelizing the Serial Code 48

Contents

4.2.2

4.4.1
4.4.2

Bibliography

Index

Looking at the Parallel Results
4.3 Using the scale_aware Option
4.4 Termination Revisited

Using function_delta to Terminate the Iteration

Using the Executive Function

49
51
52
53
93

55

58

Contents

Preface

This is the users’ guide for the MATLAB version of implicit filtering imfil.m.
The book [19] is based on this version of the code and contains a much more complete
account of imfil.m, including a review of the important ideas from traditional
optimization, details of the algorithmic decisions, and some of the theory. The code
will be updated and maintained, and as that happens this manual will be updated
as well. Updates to the book will happen more slowly.

I assume that you have a background in optimization at the level of [10,18].
If you do not, and simply want to use imfil.m as a consumer, I have tried to make
that possible, but make no guarantees.

Implicit filtering is a hybrid of a projected quasi-Newton or Gauss-Newton
algorithm for bound constrained optimization and nonlinear least squares prob-
lems and a deterministic grid-based search algorithm. The gradients for the quasi-
Newton method and the Jacobians for the Gauss-Newton iteration are approximated
with finite differences, and the difference increment varies as the optimization pro-
gresses. The points on the difference stencil are also used to guide a direct search.

Implicit filtering, like coordinate search, is a sampling method. Sampling
methods control the progress of the optimization by evaluating (sampling) the ob-
jective function at feasible points. Sampling methods do not require gradient in-
formation, but may, as implicit filtering does, attempt to infer gradient and even
Hessian information from the sampling.

imfil.m is a MATLAB implementation of the implicit filtering method. This
version differs in significant ways from our older FORTRAN code [7]. This document
is a complete reference to Version 1.0 of imfil.m, covering installation, testing, and
its use in both serial and parallel environments.

As implicit filtering has evolved since its introduction [33], so have several
related approaches. The current version of implicit filtering, as reflected in this
book and in imfil.m, uses ideas from [1,9,16,24].

The development of implicit filtering has been supported by several grants
from the National Science Foundation and the Army Research Office, most re-
cently NSF grants DMS-0707220, CDI-0941253, and OCI-0749320, ARO grants
WI11NF0910159, W911NF-07-1-0112, and W911NF-06-1-0412, and USACE con-
tracts W912HZ-10-P-0221 and W912HZ-10-P-0256.

C. T. Kelley
Raleigh, North Carolina

vi Preface

March, 2011

How to get the software

I maintain and update the software. The examples in this book were done with
Version 1.0. The code will evolve as I and others use it in applications, hence we
do not include source code as part of the manual.

You can get the most recent archival version of the software from STAM at

http://www.siam.org.book.se23/
I will put slightly more frequent updates on
http://www4.ncsu.edu/"ctk/imfil .html

but the SIAM version is the version of record and the one I support.
On those pages you will find

A pdf file of this document.

imfil.m
This is the main implicit filtering code.

imfil optset.m handles the options.

Several examples within the Examples directory:

— simple example from § 1.4 in the Simple_Example subdirectory

— example for linear constraints from § 3.1 and § 3.4.1 in the Linear_Constraints
subdirectory

— case study for parameter identification problem for the simple harmonic
oscillator (see Chapter 4) in the Case_Study_PID subdirectory

— case study for the hydrology example from [19] in the Case_Study HC
subdirectory

— case study for the water resources policy example from [19] Case_Study_Water
subdirectory

e The Imfil Tools directory has examples and useful programs for the ad-
vanced options in Chapter 3.

vii

viii Preface

You can download the whole works as a .tar.gz. If you do that the examples
are in clearly labeled subdirectories.
One can obtain MATLAB from
The MathWorks, Inc.
3 Apple Hill Dr.
Natick, MA 01760,
(508)653-1415
Fax: (508)653-2997
Email: info@mathworks.com
WWW: http://www.mathworks.com

Chapter 1

Getting Started with
imfil.m

In this chapter we give a brief description of what imfil.m does, how to install it,
and what the computing environment should be. We will illustrate its use for two
simple problems. We do not describe all the options, the details of the algorithms,
or the ways to extend the code on your own. Chapter 2 is the complete reference
manual for imfil.m.

1.1 Computing Environment and Installation

In order to use imfil.m, you will need to get the software, put the codes in your
MATLAB path, and be running a recent version of MATLAB. We have tested
imfil.m on versions 6.5 and higher. Higher is better, especially if you want to use
the parallel toolbox.

imfil.m uses very little memory on its own. The codes which define your
problem may use much more. MATLAB will complain if it runs out of memory,
which is less likely if you run version 7.5 or later.

Installation is easy. Download the MATLARB files for imfil.m from

http://www4.ncsu.edu/"ctk/imfil .html

Then put imfil.m and imfil_optset.m in a directory and put that directory in
your MATLAB path.

1.2 What imfil.m does

Implicit filtering solves bound constrained optimization problems :

mig fa), (1.1)

xTE

by which we mean that the goal is to minimize the objective function f subject to
the condition that 2 € RY is in the feasible region (or nominal design space)

Q={zecRN|L; < (z); <U;}, (1.2)

1

2 Chapter 1. Getting Started with imfil.m

which is a hyperrectangle in RY. imfil.m is a MATLAB implementation of
implicit filtering.

Implicit filtering, and the other methods that are derived from coordinate
search, are best used in cases where f is either not smooth, not everywhere defined,
discontinuous, or when derivatives of f are too costly to obtain. The motivating
examples for the construction of implicit filtering were problems in which f was a
smooth function corrupted by low-amplitude, high-frequency noise, or which was
not defined (i.e. the code for computing f failed) at many points in the nominal
design space ().

In the classical nonlinear programming problem [12,15,28] f is a smooth (i.e.
twice Lipschitz continuously differentiable) function and © can be described by
smooth inequality constraints, i.e.

Qc ={z € RY |¢i(x) <0,1<i< P} (1.3)

There are several good gradient-based methods and codes for solving this classical
problem [3,4,6,8,14,32]. Sampling methods such as implicit filtering are not among
them, and one should use a gradient-based code for such problems.

Implicit filtering is a sampling method. By this we mean that the optimiza-
tion is controlled only by evaluating f at a cluster of points in 2. That evaluation
determines the next cluster. Implicit filtering’s samples are arranged on a stencil,
and it is important to understand how that stencil is built. We begin with a current
iterate . and the value of the function f(z.). Then, the default algorithm is to
sample the 2N points

et hv;1 <i<N,

where
v; = (L — Uy)ey,

e; is the unit vector in the ith coordinate direction, and h, the scale varies as the
optimization progresses. The default sequence of scales is

{2—n }scaledepth
n=scalestart"

The algorithmic parameters scaledepth and scalestart can be changed from
the defaults of 7 and 1 with the imfil optset command. The optimization will
terminate when the sequence of scales has been exhausted.

imfil.m uses the values of f on the stencil in several ways, one of which is to
construct a difference gradient and use that in a quasi-Newton method. imfil.m
reports results after each quasi-Newton iteration is complete. When the supply of
scales has been exhausted, the optimization terminates.

imfil.m scales the bounds by changing variables so that L, = 0 and U; =1
for all i. Scaling helps imfil.m take steps of relatively equal size in all the variables.
You do not have to scale the variables. imfil.m does that for you. The
scaling of x is transparent to you unless you use the executive _function (§ 3.5)
or explore_function options (see Chapter 3).

1.2. What imfil.m does 3

1.2.1 Constraints

Implicit filtering is able to respond to the function’s failure to return a value. When
this happens, we say that a hidden constraint has been violated. imfil.m treats
a point in for which f has no value as missing data, and will proceed without the
value. Your implementation of f (see § 1.2.3 and 2.2.2) must communicate a failure
to imfil.m.

Explicit constraints are those that can be evaluated by simply testing the
variables and not calling an expensive simulator within f. These are the kinds of
constraints one sees in nonlinear programming

ci(z) <0,1<i<P,

where ¢; : RY — R and the inequality is understood componentwise. If you have
explicit constraints you must communicate infeasibility to imfil.m by signaling
failure.

You could also use a penalty function to inform imfil.m about explicit con-
straints [12,28]. In this approach one replaces f by

fo(@) = f(z) +p(z)

where p is an penalty function which measures the deviation from feasibility. For
example, the exact [; penalty function for smooth inequality constraints is

1L
p(z) = ; Zmax(—ci(x),O).

Here p is the penalty parameter. Selecting u requires some thought [28].

Constraints can cause problems for stencil-based sampling methods by hiding
descent directions from the stencil, and enriching the set of directions is necessary for
convergence theory [1,24] and useful in practice as well. The add new directions
(§ 3.1), vstencil (§ 2.9.1), and random_stencil (§ 2.9.2) options to imfil.m are
three ways to do this.

1.2.2 The Budget for the lteration

The most common way to terminate a sampling algorithm is to assign a budget
of function evaluations to the optimization, and to stop the computation when
that budget is exceeded. When the function may fail, keeping track of the budget
requires more care, and your code for f must help imfil.m with that. One thing
to consider, for example, is that sometimes a failed point is significantly cheaper to
detect than a complete call to f.

So, at a minimum, you must give imfil.m an initial iterate, the objective func-
tion, the function value at the inital iterate, the budget, and the bounds. imfil.m
will return the optimal point z, and (optionally) a history of the iteration. You can
use the history to evaluate the performance of the algorithm or to understand what
has happened if the iteration stagnates.

4 Chapter 1. Getting Started with imfil.m

Assigning the budget can be tricky. If the budget is too large, the iteration
will waste function evaluations while making very little progress. A small budget,
on the other hand, can clearly hide a good solution. We illustrate the effects of
poorly sized budgets in § 4 and § 4.4.

1.2.3 The Objective Function

You must write a MATLAB code for f, which will take as its input z € RY and
return

e a value fout = f(x),

e a flag ifail to signal a failed evaluation (ifail = 0 unless the evaluation fails,
if the evaluation fails set ifail =1 and fout = NaN), and

e jcount, an estimate of the cost.

The NaN notation (“not a number”) comes from the IEEE floating point standard
[17,29]. We use it to indicate missing data in a way that allows MATLAB to
propagate it through the computation.

So, the call to f would look like

[fout,ifail,icount]=f (x)

If your function never fails and the cost of evaluation is independent of x, you
can omit the ifail and icount arguments by setting the simple_function option
to 1. After doing that you may use a function with only one output argument. Use

options=imfil_optset(’simple_function’,1);
and then imfil.m will accept
fout=f(x),

and set ifail = 0 and icount = 1. If you use the parallel option, imfil.m will
count the evaluations correctly.

1.3 Basic Usage

At a minimum, imfil.m requires the objective function f, the bounds in an N x 2
array, with L in the first column and U in the second, and a budget. imfil.m
will examine a cumulative cost estimate (which uses icount) and terminate the
optimization when the budget is exceeded. imfil.m will not interrupt an iteration in
the middle, so you should expect a modest overshoot in the cost of the optimization.
imfil.m will also terminate when the list of scales has been exhausted. We describe
other ways to terminate the iteration in § 2.10 and § 2.11.
A complete call would look like

x=imfil (x0,f,budget,bounds) ;

1.3. Basic Usage 5

or
[x,histout]=imfil (x0,f,budget,bounds) ;

if you want the history of the iteration. We will use the histout array in the exam-
ples in this chapter. You can get more information by asking for the complete_history
structure. We explain the details of the histout array and the complete_history
structure in § 2.3.1 and § 2.3.2.

Remember that if your objective function is a MATLAB .m file, say myfun.m,
youll use the MATLAB function handle notation (the @ symbol) before name of
the function. Then the call would look like

x=imfil (x0,@myfun,budget,bounds) ;

myfun.m would have to be either in your MATLAB path on in the current directory.
Note that we call the function with a MATLAB function handle, rather than using
the name of the file in quotes. The reason for this is accommodation of the way
way MATLAB handles optional extra arguments to functions.

The histout array is an IT x (N + 5) dimensional array, where IT is simply
a counter of the number of times the array is updated. The histout array is created
after the first function evaluation and updated after each approximate gradient
computation. For now we will concentrate on the first two columns, which contain
the cumulative number of function evaluations fcount and the value of f at the end
of the iteration.

1.3.1 Termination

There are two iterations which require termination parameters. The inner itera-
tion is the quasi-Newton iteration for each value of h. The outer iteration is the
implicit filtering iteration. In this section we will explain the default termination
criteria and list some other ways to terminate these iterations. The details are in
§ 2.10.

The inner iteration will terminate

e if the value of f at the current point is smaller than the values elsewhere on
the finite difference stencil, a condition we will call stencil failure,

e if the internal termination criteria of the quasi-Newton iteration are satisfied.

One can tune both of these criteria, and a user interested in doing that should look
at [19] to understand the details.
The outer iteration, by default, terminates when either

e a budget of calls to the function has been exceeded or
e the list of scales has been exhausted.

The budget is an input argument to imfil.m and this mode of termination
usually works well. One can do more, and set various options to terminate the
iteration when

6 Chapter 1. Getting Started with imfil.m

e the function value has been decreased to a desired target or
e the variation in the function on the stencil is sufficiently small.

See § 2.10 for the details.

1.4 A Very Simple Example

The files for this example are in the Examples/Simple_Example directory of the
software collection.

In this section we apply imfil.m to a simple example to show you how to set
up the data and look at the results. We will minimize

flzy, o) = (23 4+ 22) % (1 + .1 %sin(10 * (21 + x2)))
subject to the bound constraints
“1< 2,29 < 1.

It’s not hard to see that the optimal point is z* = 0.
To begin we write a MATLAB .m file for f, which we will call f_easy.m. The
. file is

function [fv,ifail,icount]=f_easy(x)

% F_EASY

% Simple example of using imfil.m

%

fv=x’*x;

fv=fvx(1 + .1*sin(10 * (x(1) + x(2))));

yA

% This function never fails to return a value
%

ifail=0;

yA

% and every call to the function has the same cost.
YA

icount=1;

Note that we include the i fail and icount in the output arguments to f _easy.m, even
though they are not really needed. We could avoid that by using the simple_function
option.

We will use imfil.m to minimize f_easy and then use the histout array to
study the details of the iteration. To use imfil.m we will need to specify a budget
and an initial iterate, which in this example are

zo = (.5,.5)7 and budget = 40.

Our code driver_easy.m runs imfil.m and then prints the first two columns of the
histout array.

1.4. A Very Simple Example 7

function [x,histout]=driver_easy;

% DRIVER_EASY

% Minimize f_easy with imfil.m

%

% Set the bounds, budget, and initial iterate.
bounds=[-1, 1; -1 1];

budget=40;

x0=[.5,.5]";

%

% Call imfil.

%

[x,histout]=imfil (x0,@f_easy,budget,bounds);

%

% Use the first two columns of the histout array to examine the
% progress of the iteration.

%

histout(:,1:2)

The output directly from MATLAB is

1.0000e+00 4.7280e-01
3.0000e+00 4.7280e-01
8.0000e+00 4.7280e-01
1.5000e+01 2.6572e-01
2.0000e+01 9.6363e-04
2.5000e+01 9.6363e-04
3.0000e+01 9.6363e-04
3.5000e+01 9.6363e-04
4.0000e+01 5.7334e-04
4.5000e+01 1.2430e-04

The call to imfil.m returns
r=(88x107% -6.8 x 107*)7

as the solution.

The first column is the function evaluation counter, the second the value of
the function, and the third the norm of the approximation of the gradient imfil.m
computes using the function values on the stencil. One might think that the function
evaluation counter should increase by at least four with each iteration, since the
stencil has four points. However, if a point in the stencil is infeasible, as two are in
the first iteration, the evaluation is skipped. Hence on the first iteration imfil.m
reports the function value at the initial iterate and the norm of an approximate
gradient based on three points (the initial iterate and the two feasible points in the
stencil).

We see a decrease in the function in the second column in the early phase
of the iteration, as one would expect. Note also that there is a middle part of

8 Chapter 1. Getting Started with imfil.m

the iteration where no visible progress is made. This “flat spot” is, unfortunately,
common in sampling methods. At the end, the function decreases again. Had
we terminated after 20 iterations, we would have missed this improvement. If we
increase the budget and the number of scales (see Chapter 4 and § 1.5.4) we’d
see further improvement. The histout array for this computation indicates the
progress.

Note that the iteration terminated over budget. The reason for this is that
the function evaluation counter is compared to the budget only after each iteration,
so one may expect to exceed the budget by a bit.

1.5 Setting Options

You can set several algorithmic parameters with the imfil _optset options com-
mand. Many of these are rarely needed or are intended for the specialist. We will
discuss only the most useful and important in this section. We will explain the
details for all the options in Chapter 2.

If you want to accept the default options, you need do nothing. If you want to
explicitly modify the default options structure, you can get if from the imfil_optset
command by calling that command with no arguments.

options=imfil_optset;

You need only do this once; additional calls to imfil_optset will update the
the options structure you've already created. For example, if you want to change
scalestart to 3 and scaledepth to 10, you could call imfil_optset three times:

options=imfil_optset;
options=imfil_optset(’scalestart’,3,options);
options=imfil_optset(’scaledepth’,10,options);

prior to the call to imfil.m. You can also put all three of the calls to imfil_optset
in the code fragment above on a single line

options=imfil_optset(’scalestart’,3,’scaledepth’,10);

If you want to change an existing set of options, you would add the name
of the options structure to the imfil optset command. For example, to change
scaledepth from 10 to 8, in the options structure you created with the call to
imfil_optset above, the call would be

options=imfil_optset(’scaledepth’,8,options) ;

You might try to modify driver_easy.m by increasing the budget and the
number of scales. If you change the call to imfil.m to

options=imfil_optset(’scaledepth,20);
bounds=[-1, 1; -1 1];
budget=100;

1.5. Setting Options 9

x0=[.5,.5]7;

%

% Call imfil.

%

[x,histout,complete_history]l=imfil (x0,@f_easy,budget,bounds,options);

you will see a smaller function value and one more flat spot. You might also try the
smooth_problem (see § 2.6.4) option.

1.5.1 Nonlinear Least Squares

Many problems, such as the example in Chapter 4, are best formulated as nonlinear
least squares problems, where F' returns an vector of residuals in R™ and the
function to be minimized is

J(@) = |[F@)|?/2 = F(a)" F(x)/2 (1.4)

You can tell imfil.m that your problem is a nonlinear least squares problem by
setting the least_squares option to 1 with the command

options=imfil_optset(’least_squares’,1);

If you do this you need to write your function so that F' € RM is returned.
imfil.m will construct f(x) = F(x)? F(x)/2 for you. The optimization method is
also tuned to a nonlinear least squares computation, and the underlying method is
a damped finite-difference Gauss-Newton iteration [10,18]. Chapter 4 has a simple
nonlinear least squares example.

1.5.2 Parallel Computing

The parallel option tells imfil.m that f can be called with multiple arguments,
and will return a matrix whose columns are the values of f, ifail, and icount. So
if x is an N x P array of P arguments to f and parallel is set to 1, a call to f(z)
will return three 1 x P vectors of values and flags. It is the your responsibility to
write f to do the parallel evaluation in an efficient way. Our example of a parallel
call in § 4.2 shows how imfil.m responds to

options=imfil_optset(’parallel’,1);

If you are solving a nonlinear least squares problem, where a call to f returns
an M x 1 column vector, your parallel function should return an M x P array of
residual values as well as vectors iflag and icount. The parallel algorithm is not
the same as the serial method because all the line search possibilities are examined
at the same time (see § 2.7 for the details). One implication of this is that more
function evaluations can be used even if the final result is the same as in the serial
case and the total runtime is significantly less. One should interpret graphs like
Figure 4.1 with care when one does the function evaluations in parallel. The default
is parallel = 0.

10 Chapter 1. Getting Started with imfil.m

The latest versions of MATLAB support some parallelism. The MATLAB
parallel computing toolbox matlabpool command lets you build a pool of “work-
ers” or “labs”, which are separate copies of MATLAB running on each core of a
multicore computer. The toolbox also provides the parfor loop. A parfor loop
executes each iteration of the loop on a separate worker, if an idle worker is avail-
able. For example, suppose you have an 8 core computer and want to evaluate f at

several points {z; ,le C R', you might do something like

parfor i=1:k
(1) = £(x(@i));

end

after calling matlabpool(8) once for your MATLAB session. This, in fact, is how
one would use parfor, but you must pay attention to global variables and memory
conflicts among statements in the loop. The example in Chapter 4 uses the parfor
loop.

Here is an example of a MATLAB session which calls f_easy 16 times in par-
allel on an 8 core computer. After opening MATLAB we begin with a matlabpool
command to open 8 labs:

>> matlabpool(8)
Starting matlabpool using the ’local’ configuration
. connected to 8 labs.

If you use matlabpool while labs are open from a previous call, MATLAB will
complain, and you should close all open labs with matlabpool close. Our code
parallel_easy then uses a parfor loop to evaluate f_easy at some random points
and print the results. The codes are in the subdirectory Examples/Simple_Example
in the software collection.

% PARALLEL EASY

% A simple matlab parfor example.
% You must call matlabpool if you want this to run in parallel.

x=rand (2, 16) ;
f=zeros(16,1);
parfor i=1:16
f(i) = feval(@f_easy,x(:,1));
end
f

The parallel_easy script could easily be converted into a parallel version of
f_easy

function [fv, ifail, icount]=f_easy_p(x)
% F_EASY_P
%

1.5. Setting Options 11

% A parallel version of f_easy.
% You must call matlabpool if you want this to run in parallel.
h
%function [fv, ifail, icount]=f_easy_p(x)
b
% fv must be a ROW vector. This makes scalar optimization consistent
% with what imfil does for nonlinear least squares.
)
% If you make fv a column vector, you will get some very interesting
% error messages.
)
[nr,ncl=size(x);
fv=zeros(1,nc);
h
% Like f_easy, this function never fails and all calls to f have the
% same cost. However, we have to count the number of calls.
)
ifail=zeros(nc,1);
icount=nc*ones(nc,1);
)
parfor i=1l:nc
fv(i) = feval(@f_easy,x(:,i));
end

MATLAB does the sensible thing if you don’t have the parallel toolbox and simply
executes a for loop. This means that f_easy_p will simulate parallel execution even
if it actually works in serial mode.

To change driver_easy.m into a code which calls imfil.m in parallel, we
change the call to imfil.m to

%

% Turn the parallel option on.

%

options=imfil_optset(’parallel’,1);

%

% Call imfil.

%

[x,histout,complete_history]l=imfil (x0,@f_easy_p,budget,bounds,options);
%

to build driver_easy_p.m, the parallel version of driver_easy.m.
The output is a little different from that of the serial code.

1.0000e+00 4.7280e-01
3.0000e+00 4.7280e-01
8.0000e+00 4.7280e-01
1.6000e+01 7.3599e-03
2.1000e+01 7.3599e-03

12 Chapter 1. Getting Started with imfil.m

2.6000e+01 7.3599e-03
3.1000e+01 7.3599e-03
3.9000e+01 1.5944e-05
4.4000e+01 1.5944e-05

because the parallel and serial versions are slightly different algorithms (see § 2.7).
There are also some very useful resources in the MATLAB Central File
Exchange. This is a software repository maintained by the Mathworks at

http://www.mathworks.com/matlabcentral/fileexchange/

MULTICORE [5] is a package that lets you use multiple cores with MAT-
LAB. Each core runs its own copy of MATLAB. The package moves data between
cores with file I/O, an approach with can slow down the computation if function
calls are very inexpensive. The MATLAB parfor construct uses memory for the
interprocess communication, and is significantly faster. However, MULTICORE is
free. The software associated with [20] has the pRUN program, which allows you
to run the same MATLAB code on multiple processors. These approaches do not
support fine-grained parallelism (i.e. the use of many processors to speed up the
internal computations within f), but should work well for very expensive function
evaluations.

1.5.3 Scaling f

If the values of | f| are very small or very large, the quality of the difference gradient
which imfil.m uses in its search can be poor. imfil.m attempts to solve this
problem by scaling the function by dividing it by the size of a “typical value”.
Unless you tell imfil.m otherwise, this value is 1.2 times the absolute value of the
value at the initial iterate.

You can change this by setting the fscale option. Setting fscale to a nega-
tive value will tell imfil.m to use |fscale| x |f(xo)| as the typical value for f. Setting
fscale to a positive value will tell imfil.m to use fscale as the typical value. If
you blunder and set fscale = 0, imfil.m will restore the default. If f(z) = 0 then
imfil.m will set fscale to 1. See § 2.5.1 for more details on fscale and its role in
imfil.m.

Scaling f to order 1 means that we can compare the variation in f (or the
change in f from one iteration to the next) to a tolerance (which may depend on
the scale) and make a termination decision. See § 2.10 for the details and § 4.4.1
for an example.

1.5.4 Changing the Scales

imfil.m uses a stencil that is build from the bounds. If your current point is z.,
imfil.m’s default behavior is to sample the 2N points

T +]’L(Lz — Ui)ei 1 <) < N, (15)

1.6. Passing Data to the Function 13

where e; is the unit vector in the ith coordinate direction, and h, the scale varies
as the optimization progresses. Implicit in the definition of the stencil (1.5) is the
finiteness of the bounds.

The sequence of scale is

- ledepth
{27 ecatestart

scalestart and scaledepth can be changed with the options command. The

defaults are scalestart = 1 and scaledepth = 7. You can use your own array of

scales with the option.

1.5.5 Looking at the lteration History

You have already seen how the histout array can be used to examine the perfor-
mance of the iteration. imfil.m maintains an internal complete_history structure
which contains the entire history of the iteration (see § 2.3.2). You can access that
data either as an optional output argument to imfil.m or within the iteration by
using one of the advanced options (see Chapter 3).

1.5.6 Scale-Aware Functions

Your function may be able to adjust its own accuracy or resolution. In this case
we will say that your function is scale-aware . One example of this possibility is
if the tolerance in a solver can be reduced as the scale is reduced. This is the way
in which imfil.m can be used as a a multi-fidelity solver. If your function has this
capability, you may enable communication between imfil.m and the function call
by adding the scale as an extra argument to f, making the call look like

[fout,ifail,icount]=f(x,h)

You must tell imfil.m that f is taking the extra argument by setting the
scale_aware option to 1, the default is 0. See § 2.6.3 and § 4.3 for examples.

1.6 Passing Data to the Function

You may need to pass data from your calling program directly to f. For example,
the data for a nonlinear least squares problem is part of the least squares residual,
but you may not want to hard-code that data into the function. imfil.m permits an
optional final argument which you may use for that purpose. The calling sequence
looks like

[x,histout]=imfil (x0,f,budget,bounds,options,extra_data);

Here extra data can be an array, a function handle, or a structure (see 2.8
for more details). Chapter 4 an example of how this can be used.

You might think that you could use MATLAB global variables for this purpose.
However, global variables can cause problems with parallel computing in MATLAB,
and we recommend that you avoid them.

14

Chapter 1. Getting Started with imfil.m

Chapter 2

Using imfil.m

This chapter is about imfil.m and its use. As in the earlier chapters, the notation
in the code fragments is different from the mathematical notation in the text. So,
for example, the initial iterate in the code is x0 instead of xg, which is the notation
we will use in the text.

The full calling sequence for imfil.m is

[x,histout,complete_historyl=
imfil (x0,f,budget,bounds,options,extra_data);

The last two input arguments options (§ 2.4) and extra_ data (§ 2.8) are
optional. You must use the options argument if you want to use the extra_data
argument. If the options argument is omitted, imfil.m will use the defaults for
options and make extra_data an empty array.

The output argument complete_history is also optional, but is useful for
debugging and performance analysis.

2.1 Installation and Testing
Download the MATLAB files for imfil.m from

http://www4.ncsu.edu/"ctk/imfil .html
or
http://www.siam.org.book.se23/

Put imfil.m and imfil optset.m in a directory and put that directory in your
MATLAB path.

2.2 Input

The input data are

15

16 Chapter 2. Using imfil.m

e 1o € RY: the initial iterate,

o £: RN — RM: the objective function f if M =1 or, in the case of nonlinear
least squares problems with M > 1, the nonlinear residual F,

e budget, the maximum number of function evaluations allowed to the optimiza-
tion,

e the bounds array bounds, and
e the options structure.

the extra_data structure.

We will discuss all but the options and extra_data arguments in this section.
We will explain the options at length in § 2.4 and how to send extra data to the
function in § 2.8.

2.2.1 The Initial Iterate

imfil.m requires a feasible initial iterate. This means that x0 must satisfy the
bound constraints, i.e.

bounds(j,1) < x0(j) < bounds(j,2),
for all j, and that f(z() must be defined, i.e. f will return a value for 0 with

ifail = 0.

2.2.2 The Input Function f

If the simple_function option is off (i.e. = 0), the calling sequence for tt f should
be

[fout,ifail,icount]=f(x);
or
[fout,ifail,icount]=f(x,h);

if your function is scale-aware (see § 2.6.3) i.e. can use the scale to manage its own
internal control of accuracy. If your function is scale-aware, set the scale_aware .
option to 1.

You may omit the i fail and icount arguments if you set the simple function
option to 1. In that event, the calling sequence is

fout=f(x);
or

fout=f(x,h).

2.2. Input 17

In most cases the procedures for optimization problems and nonlinear least
squares problems are the same, so we will express things in terms of f, the objective
function for an optimization problem. When the difference between optimization
and nonlinear least squares is important, we will discuss both cases.

If f(x) successfully returns a value, fout = f(z) should be that value, the
failure flag i fail should be 0, and icount should be an estimate of the cost. imfil.m
uses icount when comparing the cost of the optimization to the budget and to
build the first column of the histout array, and you have the flexibility to assign
non-integer values to icount. If, for example, a function call fails after performing
half of the normal work, you might set icount = .5.

ifail =1 is the signal that the function cannot return a value, i.e. a hidden
constraint has been violated. You must return a NaN as the value when this
happens. imfil.m will eliminate failed points from the stencil when computing the
stencil gradient.

If the parallel option is on (i.e. set to 1, ’on’, or ’yes’), then imfil.m will
send an array of input arguments to f. For the evaluation of the stencil deriva-
tive, imfil.m will send the elements of the stencil that do not violate the bound
constraints to f before it computes the stencil gradient. During the line search,
imfil.m will send every point that could be queried in the line search to f all at
once; the default being the four points {z + Ad} for A = 1,1/2,1/4,1/8. You can
change this by setting the maxitarm option (see § 2.11.2).

Your parallel function must be able to accept an N x P array of P arguments
to f, and return three P x 1 arrays of values for fout, ifail, and icount. If your are
solving a least-squares problem where F' : RN — RM then fout should be M x P.
It is your job to construct your function to use what parallelism you have efficiently.
The simple_function option does the right thing when the parallel option is on.
If you send f P vectors, then imfil.m will set icount = P.

2.2.3 The Budget

The optimization will terminate when the cumulative cost (as measured by icost)
exceeds the budget. A budget that is too small will force premature termination
(as will a list of scales that is too short). A budget that is too large will waste
function evaluations and the iteration will make very little progress in the latter
stage (see the discussion in § 4.4). The optimization is likely to finish over budget
because imfil.m does not stop the outer (optimization) loop in mid-stream. The
example in Chapter 4 shows how to set the budget and some effects of making the
budget (or the number of scales) too small or too large.

2.2.4 The Bounds

The bounds array is a N x 2 array with the lower bounds in the first column and
the upper bounds in the second column. For example, if N = 100 and the bounds
are 2 < z(i) < 3, you would use

bounds (:,1)=2*%ones(100,1); bounds(:,2)=3*ones(100,1);

18 Chapter 2. Using imfil.m

Keep in mind that imfil.m requires you to provide finite bounds for all the
variables.

2.3 Output and Troubleshooting

The output of imfil.m includes x, an approximation of the solution, and two op-
tional ways to look at the history of the iteration. The histout array is a simple an
optional iteration history. The complete history structure contains every point
where imfil.m has evaluated f and either the value of f or a failure flag.

2.3.1 The histout array

The histout array is an IT X (N+5) dimensional array, where IT is simply a counter
of the number of times the array is updated. The histout array is created after
the first function evaluation and updated with a new row after each approximate
gradient computation.

For optimization problems

histout(:,i) = [fcount, fval, |V f(z,V,h)|, ||s|l, iarm, z™]
and for nonlinear least squares
histout(:,i) = [fcount, F(x)T F(z)/2, |DF(z,V,h)TF(z)||,s||,iarm, zT].

For each iteration (row) the first five elements are fcount, the number of function
evaluations so far (the sum of icount from each call to f), fval, the current value
of the objective function, the norm of the stencil gradient, the norm of the step,
and iarm the number of times the steplength was reduced in the line search for that
iteration. The remaining N elements are z7, where x is the current iteration. We
used the histout array for the iteration history plots in the book. Keep in mind
that the norm of the step is reported in imfil.m’s internal scaling (i.e. bounds
between 0 and 1).

When imfil.m reduces the scale after a stencil failure, imfil.m sets iarm = —1
in the histout to indicate that no quasi-Newton work at all was done.

The example pid_example_chapter_1.m in the Examples/Case_Study_PID di-
rectory of the software collection shows how to use the histout array to plot the
iteration history.

2.3.2 The complete_history Structure

The complete_history structure records the successful points (i.e. those for which
f returns a value), the values at the successful points, and the points where f failed
to return a value. The fields in the structure are complete_ history.good_points,
complete_history.good_values, and complete_history.failed points.
imfil.m uses the complete history structure internally to avoid evaluation of
f at the same point more than once. This is a possibility if the poll of the points on
the stencil is finding better points and the quasi-Newton iteration is not. When the

2.4. Setting Options 19

quasi-Newton method succeeds, it is very unlikely that the new point or the stencil
around it will have been sampled before.

The example history_test.m in the Examples/Case_Study_PID directory of
the software collection illustrates the use of the complete_ history structure to
examine the difference between the parallel and serial versions of imfil.m.

You may disable the complete_history structure, and save some storage, by
setting the complete_history option to ’off” or 0 with

options=imfil_optset(’complete_history’,’off’,options);

Only do this if you are having serious problems with storage. imfil.m can be much
less efficient with complete_history turned off.

2.3.3 Slow Convergence or No Convergence

When the optimization fails to converge or performs poorly, the histout array
may indicate the reasons. If, for example, you see that iarm = —1 for several
iterations in a row, that means that the stencil failed on those iterations. That
is an indicator that you could terminate the optimization earlier by either chang-
ing scaledepth (§ 2.6.1) , target (§ 2.10.1), function_delta (§ 2.10.3), or
stencil_delta (§ 2.10.2).

If iarm = maxitarm (see § 2.11.2) for several consecutive iterations, then the
line search is failing often but the poll is finding better points on the stencil. This
is a signal that the quasi-Newton/Gauss-Newton step is poor, and it may be that
your function is not well modeled by a smooth surrogate. In that case, imfil.m
is reverting to a direct search and you may want to reduce maxitarm. If this
happens only when the scales become small, then the noise in your function may be
large enough to render numerical differentiation ineffective. If you can control the
accuracy in f, you should do that and make f scale-aware (§ 2.6.3). Your function
may also be poorly scaled, and changing fscale (§ 2.5.1) can help.

2.4 Setting Options

You can change imfil.m’s algorithmic parameters with the imfil optset com-
mand. One way to do this is to begin with a call with no arguments.

options=imfil_optset;

The output of this call is a MATLAB structure with the default options for
imfil.m. You need only do this once and then use imfil_optset to update the
options structure you've created. For example, if you want to change scaledepth
to 20 and use the SR1 quasi-Newton update, you could call imfil_optset three
times

options=imfil_optset;
options=imfil_optset(’quasi’,’srl’,options);
options=imfil_optset(’scaledepth’,20,options);

20 Chapter 2. Using imfil.m

prior to the call to imfil.m. You can also put all the calls to optset on a single line
when you initialize the options structure

options=imfil_optset(’quasi’,’srl’,’scaledepth’,20);

If you wish to use the options structure, you add that as an argument to
imfil.m when you call it. So your call would look like

[x,history]=imfil (x0,f,budget,bounds,options);
instead of
[x,history]l=imfil (x0,f,budget,bounds) ;

Many of the options are toggles, which are either on or off. You may turn
a toggle on with any of 1, ’on’, or ’yes’ and off with any of 0, 'no’, or ’off’. For
example,

options=imfil_optset(’least_squares’,1);
and
options=imfil_optset(’least_squares’,’yes’);

are equivalent. Note that 1 is a numerical value and ’yes’ is a string.

2.5 The Inner lteration

The inner iteration is the optimization loop. imfil.m solves general bound con-
strained optimization problems with a quasi-Newton method and nonlinear least
squares problems with the Gauss-Newton iteration. You can replace the built-in
methods for the inner iteration with the executive function option (see § 3.5).

2.5.1 Scaling f with fscale

If the values of | f| are very small or very large, the quality of the difference gradient
which imfil.m uses in its search can be poor. imfil.m attempts to solve this
problem by scaling the objective function by dividing it by the size of a “typical
value”, which we call im fil_fscale. In order to do this for nonlinear least squares
we scale the least squares residual by +/fscale. We will discuss the optimization
case here and present the complete details in § 3.2.1.
The default is
imfil_fscale = 1.2|f(x0)|,

which is usually fine.

If im fil_fscale is too large, the inner iteration within imfil.m may terminate
too soon, and you may fail to exhaust the information in the current scale. This
can lead to poor results, or even complete stagnation (i.e. xg is never changed).

2.5. The Inner lteration 21

If im fil_fscale is too small, the optimization steps may be too large, and the
line search may fail. In this case imfil.m becomes a form of coordinate search, and
the performance will suffer.

You can change this by setting the fscale option. Setting fscale to a
negative value will tell imfil.m to use

imfil_fscale = |fscalel| f(xo)l,
so fscale = —1.2 is the default. If fscale > 0 then
imfil_fscale = fscale.

fscale = 0 is not a sensible value; if you blunder and set fscale = 0, imfil.m will
restore the default. If f(xzp) = 0, then imfil.m will set im fil_fscale to 1.

2.5.2 Quasi-Newton Methods for General Problems

For general optimization problems you may set the quasi option to 0 (steepest
descent, i.e. the model Hessian is the identity matrix), ‘bfgs’ (BFGS) or ‘srl’
(SR1). The default is quasi = ‘bfgs’, the BFGS update.

Because imfil.m is intended for small problems, imfil.m maintains an approx-
imation to the full model Hessian and does not use a sparse or limited-memory [18]
formulation of the quasi-Newton methods.

2.5.3 Nonlinear Least Squares

imfil.m will also solve nonlinear least squares problems where the objective function
is

f(2) = F(a)"F()/2.

You tell the code that you have a nonlinear least squares problem by setting
least_squares option to 1 with the command

options=imfil_optset(’least_squares’,1,options);

And write your function so that the column vector F' € RM is returned.
imfil.m will compute the objective function F(z)T F(z)/2 for you.

The internal nonlinear squares solver in imfil.m is a projected damped Gauss-
Newton iteration [10,18,19].

2.5.4 Which best point to take?

If the current point is Zpese, the best point in the stencil is x4, and the point
selected by the quasi-Newton (or Gauss-Newton) iteration is @jewt, imfil.m will
select Zpewt to be the new point as long as the line search succeeds, i.e.

f(xnewt) < f(xbase)~

22 Chapter 2. Using imfil.m

If you prefer to let z,,;, be the new point if

f(xmln) < f(xnewt)a

set stencil_wins to ’yes’. The default is 'no’.

This option is useful both for very rough and very smooth problems. If your
optimization landscape has severe discontinuities (as do some of the examples in
[13]), then setting stencil wins to ’yes’ will help you jump over discontinuities.
On the other hand, if the objective function is smooth or very nearly so, setting
stencil_wins to 'yes’ will help avoid local minima when the scale h is large and
make no difference if h is very small and the quasi-Newton iteration is working
well. That is why the smooth_problems option (see § 2.6.4) sets stencil_wins to
'yes’. The default is 'no’ because imfil.m is designed to be a hybrid of search and
gradient based methods, and setting stencil _wins to ’yes’ for all scales can obscure
the benefits of the quasi-Newton iteration. The reader can try this for the examples
in Chapter 4.

2.5.5 Limiting the Quasi-Newton Step

If the quasi-Newton (or Gauss-Newton) step is too long, the line search may fail
repeatedly and you will lose the benefits of the quasi-Newton direction. In that
case, the iteration will become coordinate search. You may increase the number of
stepsize reductions by changing the maxitarm (see § 2.11.2) option from its default
of 3, which is a good idea for problems that are very close to smooth problems.
Alternatively, the 1imit_quasi_newton option lets you limit the size of the quasi-
Newton step before the line search begins. If you set 1imit_quasi_newton to ’yes’
the quasi-Newton direction will be no longer than 10k, where h is the current scale.
The default is 'yes’, which is a good choice for noisy problems. For nearly smooth
problems, 'no’ may be better.

2.6 Managing and Using the Scales
2.6.1 Scalestart and Scaledepth

imfil.m samples f on a stencil centered at the current point. The size of that
stencil varies at the optimization progresses. The default shape of the stencil is a
central difference stencil with 2/NV points. The range of sizes can be controlled by
the scalestart and scaledepth option.

If the directions in the stencil are vectors {v;}7”, imfil.m will sample f at
the points

T + h(Ll - Ul)vz

for 1 < i < m. The default vectors are the 2N unit vectors in the positive and
negative coordinate directions. The scale h varies as the optimization progresses.

The sequence of scale is

{2—n }scaledepth
n=scalestart"

2.6. Managing and Using the Scales 23

scaledepth can be changed with the imfil optset command. The defaults are
scalestart = 1 and scaledepth = 7. If you see stagnation in the iteration, reducing
scaledepth will save some effort, but be aware of the risk of early termination.

2.6.2 custom_scales

If you want to use a custom sequence of scales {h, }37¢* you may do so by setting

the custom_scales array. This a MATLAB array H with the scales
1>hi >he> ... > henaz > 0.

h1 < 1 is important because imfil.m scales the bounds to 0 and 1, so a choice of
h > 1 would certainly put all points in the stencil outside of the bound constraints.
You can be sure that at least one point (other than the center) is within the bounds
by setting h; < 1/2. You set this option with

options=imfil_optset(’custom_scales’,H,options);

2.6.3 Scale-Aware Functions

The scale_aware option tells imfil.m that your function is scale-aware. This
means that f can adjust its internal cost or accuracy with knowledge of the scale
h. The calling sequence for a scale-aware function is If scale_aware is set to 1,
imfil.m will use the scale as a second input argument to f. Your function should
look like

[fout,ifail,icount]=f(x,h);

See § 4.3 for an example.

2.6.4 Smooth Problems

If you must apply imfil.m to a smooth problems, setting smooth_problem to yes
will adjust several parameters, most importantly the scales. The result is a good,
but not optimally tuned, finite-difference quasi-Newton (or Gauss-Newton) code.
imfil.m has been used in this mode to solve suites of artificial test problems [30].
Setting smooth_problem to ’yes’ is equivalent to this block of MATLAB code:

bscales=[.5, .01, .001, .0001, .00001];

options=imfil_optset(...
’custom_scales’,bscales,...
’stencil_wins’,’yes’, ...
’limit_quasi_newton’,’no’,...
’armijo_reduction’,.25,...
’maxitarm’,5,options);

If you use this option, you should probably increase the budget and consider
both the default BFGS quasi-Newton method and SR1. Of course, as we said in
the introduction, you are better off if you use a code which has been designed for
smooth problems.

24 Chapter 2. Using imfil.m

2.7 Parallel Computing

The parallel option tells imfil.m that f can be called with multiple arguments,
and will return a matrix whose columns are the values of f, ifail, and icount. So
if x is an N X P array of P arguments to f and parallel is set to 1, a call to f(z)
will return a 1 x P row vector of values, and P x 1 vector of cost estimates, and
a P x 1 vector of failure flags. You must return a row vector with P columns for
consistency with the nonlinear least squares option.

If you are solving a nonlinear least squares problem, where a call to f returns
an M x 1 column vector, your parallel function should return an M x P array
of residual values as well as the P x 1 vectors for iflag and icount. The parallel
algorithm is not the same as the serial method because all the line search possibilities
are examined at the same time.

The default is parallel = 0.

The examples in § 1.5.2 and Chapter 4 illustrate the simplest way to make a
serial function parallel.

You must keep in mind that this can be much more complicated than simply
putting multiple calls to your function inside a parallel for loop (like the MATLAB
parfor construct). Parallel for loops typically require that the multiple calls to the
function do not compete for the same data, and therefore things like global variables
inside your function will likely cause the parallel loop to fail.

2.8 Passing Data to f

You can pass data from your calling program directly to f by adding an optional
final argument to the call to imfil.m. The calling sequence looks like

[x,histout,complete_history]=
imfil (x0,f,budget,bounds,options,extra_data);

The MATLAB ode and quadrature codes also let you pass data to a function
in this way. You must make the extra argument the final argument to f. For
example

[fout,ifail,icount]=f (x,extra_data)
or, if f is scale-aware,
[fout,ifail,icount]=f(x,h,extra_data).

Using the optional final argument is a much better idea than communicating
with f with global variables. One reason is that global variables can cause problems
with parallelism.

In the examples in Chapter 4 the additional argument is a structure which
contains parameters for an initial-value problem solver and the data for a nonlinear
least squares problem.

2.9. Stencils 25

2.9 Stencils

imfil.m offers three stencils. You can change from the default centered difference
stencil with the stencil option. The choices are a one-sided difference stencil,
which uses the positive coordinate e; if x. + he; satisfies the bound constraints, and
—e; otherwise, and the positive basis stencil [22,23] which uses the N + 1 points
{e}, and

The stencil options are 0 for the default central-difference stencil, 1 for the
one-sided stencil (for compatibility with the old FORTRAN code), and 2 for the
positive basis stencil.

2.9.1 vstencil

You may create your own custom stencil by setting the vstencil option to a matrix
with your directions in the columns.
To do that, create a matrix V'S with your directions in the columns, and then

options=imfil_optset(’vstencil’,VS,options).

The example 1c_imfil.m in the Examples/Linear Constraints directory of
the software collection shows how to use the vstencil option to avoid stagnation
when the default stencil directions are insufficient.

2.9.2 random_stencil

You can augment the stencil with k£ random vectors by setting the random_stencil
option to k. The theory from [1,11] will apply if & > 1.

The default is k£ = 0 (no random vectors) because we have seen better perfor-
mance overall with the basic centered difference stencil. One reason for this is that
more vectors will delay stencil failure and cause the iteration to spend too much
time in the line search.

If you suspect that the optimal point is on a constraint boundary, especially a
hidden constraint boundary, and are seeing stagnation in the iteration, you might
use this option and play with various values of k. Adding as few as one random
vector will make the algorithm provably convergent [11,19]. This option augments
the stencil with k uniformly distributed points on the unit sphere in RV [26,27]. See
§ 3.4.1 for an example of this option’s overcoming stagnation on a hidden constraint
boundary.

2.10 Terminating The Outer Iteration

Most problems can be solved with the default termination criteria for the opti-
mization (or outer) iteration. However, if the iteration is terminating too soon
(i.e. while it’s still making progress) or too late (i.e. taking many iterations while

26 Chapter 2. Using imfil.m

making very little progress), there are several things you can do. You may know
things that can help imfil.m do its job better or may learn things by looking at
the iteration history.

The options in this section let you use what you might know about the function
to avoid wasted effort (see § 4.4 for an example). Termination is a tricky problem
for sampling methods, which is why imfil.m offers many, maybe too many, ways
to do it.

Two obvious things are changing the list of scales using the scaledepth or
custom_scales options. The smooth problems option, for examples, uses the
custom_scales option to do part of its job. The options we discuss in this section
may help you if working on the scales does not or you have information about your
problem that is best communicated to imfil.m with these options.

2.10.1 target

You may set a target value for the optimization. The optimization will terminate
once f is below the target. The default value is —10® which means that target will
play no role in the optimization.

2.10.2 stencil_delta

If you know how accurate your function is, you may want to terminate once the
variation of the function is smaller than your estimate for the error in the function.
Setting stencil_delta to your estimate of the absolute error in f will terminate
the optimization when the maximum absolute difference of function values on the
stencil is smaller than stencil_delta. To turn this optional termination test on set
the stencil_delta option to your estimate of the error. The default is —1 which
means the option is off.

2.10.3 function._delta

Another way to use your estimate of the function’s accuracy is to terminate the
outer iteration when the change in best function value from one successful quasi-
Newton iteration to the next is small. Setting function_delta to a non-zero
value will terminate the optimization when the change in best values is less than
function_delta. This is the approach which helps in the example in § 4.4. The
difference between this and the stencil_delta options is subtle, but important.
If you choose to terminate the iteration when stencil_delta is small, you are
testing changes in the optimal point. On the other hand, using function_delta
is testing the quasi-Newton (or Gauss-Newton) iteration by looking at the change
in the optimal value. If your problem is nearly smooth, use function delta if
the iteration seems to be making very little progress in the terminal phase (i.e.
stagnating). On the other hand, if your problem is not smooth (or is a coarse
discretization of a smooth problem), stencil_delta may be a better choice for
solving your stagnation problems. Look at the example in § 4.4 (and experiment
with the code) to see how to use these options.

2.11. Terminating the Inner lteration 27

2.10.4 nmaxfail

The outer iteration will terminate after maxfail consecutive line search or stencil
failures. The default is 3. You may want to increase this limit if you think the
iteration is terminating too soon. On the other hand, if the iteration is making no
progress at all in the terminal phase, you may want to either decrease maxfail,
reduce the number of scales, or change the sequence of scales.

2.11 Terminating the Inner lteration

The nonlinear (or inner) iteration will terminate when the norm of the difference
gradient is sufficiently small, when maximum iterations have been taken for the
entire iteration, or when stencil failure is detected. All of these termination criteria
can be changed, but you should take care before messing about with these options.

2.11.1 maxit

maxit is the upper limit on the number of quasi-Newton (or Gauss-Newton) iter-
ations. The default is 50. You may never have to change this limit. Typically the
inner iteration will usually terminate with a stencil failure before 50 quasi-Newton
iterations. However, for a nearly smooth problem and a small number of scales, 50
might not be enough.

2.11.2 maxitarm

The line search will reduce the step at most maxitarm times before returning a
failure. The default is 3. The line search is limited in this way for good reason. If
your problem is noisy and you don’t find something useful after three reductions,
you’re not likely to do better with more effort. However, if your problem is nearly
smooth, you should increase maxitarm. The smooth_problem option, for example
will increase maxitarm.

2.11.3 Noise-Aware Functions and the svarmin Option

A function is noise-aware if it can communicate the size of the noise to imfil.m.
The function does this via an additional output argument. So, the call looks like

[fout,ifail,icount,noise_level]=f (x)

where noise_level is the function’s estimate of the noise.

If the noise_aware option is 'on’, then imfil.m uses the estimate of the noise
to tighten the criterion for stencil failure. To do this we evaluate the variation of
the objective function on the stencil

var = max f(x + hv;) — min f(z + hv;)
j j

and declare stencil failure when

var < notse_level. (2.1)

28 Chapter 2. Using imfil.m

If f is also scale-aware , then you may let the noise_level may depend on
the scale h. imfil.m is prepared for this and queries the noise_level before each
inner iteration.

If the noise in f does not depend on h, you may set it directly with the svarmin

option. If svarmin > 0 then the inner iteration will declare stencil failure when
var < svarman. This is equivalent to setting noise_aware to 1 or ’on’ and having
f return svarmin for noise_level.

2.11.4 Terminating the quasi-Newton Iteration with termtol

The quasi-Newton iteration will terminate when
IV f(z,V,h)| < 7h,

which is intended to mimic the necessary conditions for optimality. The constant
in the termination criteria is scaled with a typical value for f. So

7= 1imfil _fscale *x termtol.

imfil fscale is a “typical value” of f and is set with the fscale option (see
§ 2.5.1), and plays an important role in imfil.m’s internal scaling. termtol, on the
other hand, only affects the termination of the quasi-Newton loop.

2.12 verbose

The verbose option lets you watch imfil.m at work. If you set verbose = 1, you
will see the the first five columns of the rows histout array appear on the screen as
they are computed. The default is verbose = 0, which tells imfil.m to print only
the most serious warnings on the screen.

This is a useful option when troubleshooting, as it is easy to see problems with
the line search or stagnation when verbose = 1, and then stop the optimization in
mid-stream to fix the problems.

Chapter 3

Advanced Options

In this chapter we discuss some options to imfil.m whitch are powerful enough
to do harm. Before using some of these options, you must understand how im-
fil.m manages its scaling and take great care with the calling sequence. Some of
these options use imfil.m’s internal data structures. You will need to understand
how they work to use the advanced options well. This is especially true with the
explore_function (§ 3.4) and executive_function (§ 3.5) options.

3.1 Adding New Directions to the Stencil

You may add new points to the stencil before the computation of the stencil deriva-
tive with the add new_directions option. You set this option to the name of the
MATLAB function you want imfil.m to call before computing the stencil derivative.
The random_stencil option (see § 2.9.2) is a special case of adding new directions.

If your function ismy_directions.m and you are updating and existing options
structure, you would set the add new_directions option with

options=imfil_optset(’add_new_directions’,@my_directions,options);
The calling sequence for your function should be
Vnew = my_directions(x, h, V)

Vnew is the matrix with the new directions in its columns. In the input, z is
the current point, h is the current scale, and V' is the current set of directions.

You have to be somewhat careful with this. imfil.m will call your function
to add directions immediately before computing the stencil derivative, and will use
these directions in that computation. One use of this option is to capture tangent
directions to explicit constraints. It is not the way to do a global search. Use
the explore_function option (see § 3.4) to make the search more global. imfil.m
provides z and V in in your original coordinates (so do not attempt to scale them
yourself). When you return your new directions to imfil.m they are rescaled and
normalized interally.

29

30 Chapter 3. Advanced Options

The example 1c_imfil driver.m in the Examples/Linear Constraints di-
rectory of the software collection shows how to use the add_ new_directions option
for a linearly constrained problem. The tangent_directions functions in the ex-
ample follows [24] and uses the tangent directions to a linear constraint when it is
nearly active, and ignores the linear constraint otherwise. This avoids stagnation
when the stencil directions are insufficient and, unlike using vstencil does not add
more directions when they are not needed.

In the example we seek to minimize

fl@) = 1/2= (@)01)* + (1= (2)1)*(1 - 2(2))*/4

H1/2 = @121+ (@) = 2)3)/10, Y
subject to the bound constraints
0<(2)1 <1L,0< (2)2 <1,
and the linear constraint
()1 + (x(2)—1) > 1. (3.2)

Clearly the minimizer is x* = (.5,1)7. With the default options and an intial iterate
of 79 = (1,0)” on the constraint boundary, the iteration will stagnate with stencil
failure at each iteration.

We incorporate the linear constraint into the objective function with the ex-
treme barrier approach. The code for the objective is

function [fout,ifail,icount]=1lc_obj(x)
% LC_0BJ
A
% Hardwire the linear constraint x_1 + x_2 >= 1 into
% the objective to apply the extreme barrier approach
% to constraints.
%
if x(D+x(2) < 1
fout=NaN;
ifail=1;
icount=0;
else
foutl=(x(1)-.5)"2;
fout2=.25%(1-x(1))"2%(1 - x(2))"2;
fout3= .1x(x(1)-.5)"2%(1 + x(2) - 2% x(2)°2);
fout=foutl+fout2+fout3;
ifail=0;
icount=1;
end

The terms in the function are designed to put the optimal point at z* and force
stagnation if one uses the standard basis in the positive and negative coordinate
directions.

3.1. Adding New Directions to the Stencil 31

The file tangent _directions.m adds the tangent directions to the linear con-
straint if any point in the stencil violates the constraints.

function vnew=tangent_directions(x,h,v)
% TANGENT_DIRECTIONS
%
% This is an example of a way to add new directions.
%
% If any point in the stencil does not satisfy the linear constraints,
% I will add tangent directions to the stencil.
%
% The linear constraints, which we handle with the extreme barrier
% method, are x(1) + x(2) »>=1
%
vnew=[];
[mv,nv]=size(v);
yesno=1;
for i=1:nv
x_trial=x + h * v(:,1i);
yesno=yesno*test_constraint(x_trial);
end
if yesno==0
vnew=zeros(2,2);
%
% The linear constraints are (1, 1)°T x >= 1.
% So a tangent vector is (-1, 1)°T. We do not have to normalize
% this vector because imfil_core will do that.
%
vnew(:,1)=[-1,1]";
vnew(:,2)=-vnew(:,1);
end
yesno

function yesno=test_constraint(x)

A

% No deep thinking here. Either the constraint is violated (yesno = 0) or
% it’s not (yesno = 1).

A

val = x(1) + x(2) ;

yesno = (val >= 1);

The code 1d_driver.m compares the use of the add new_directions option
to the vstencil option. To use vstencil you would set the options by

Vs=[0 1; 0 -1; 1 0; -1 0; -1 1; 1 -1]°;
options=imfil_optset(’vstencil’,VS);

32 Chapter 3. Advanced Options

Figure 3.1. lteration History with Extra Directions

— vstencil
- - -new_directions

10" b

Value of f

10°F \ 1

Cost

and you would use add new_directions in this way
options=imfil_optset(’add_new_directions’,’tangent_directions’);

Both options will work, but add_new_directions is more efficient, as you can see in
Figure 3.1. The reason for this is that using the vstencil option forces evaluation
of f in the extra directions for every iteration, whereas the add new_directions
option only uses the extra direction if a point on the stencil violates the constraints.

3.2 The iteration data Structure

imfil.m keeps track of the status of the iteration with the internal iteration data
structure. This structure is used heavily within the core of imfil.m. The options
in § 3.4 and § 3.5 also may need to read some of the fields in that structure. We
will explain how these components of iteration_data are used in the following
sections. For now, we tabulate in Table 3.1 those fields of the structure which are
useful for the executive_function and explore_function options.

Most of the items in Table 3.1 should be clear to a reader who has made it
this far in the book. We explain f_internal completely in § 3.2.1.

3.2.1 Internal Scaling and f_internal

imfil.m scales both the variables and the function value. You will need to under-
stand that scaling to use the executive_function and explore_function options.
This is especially the case if you decide to revert to your original scaling in these
functions or rescale the complete_history to examine the iteration in your original
coordinates.

3.2. The iteration_data Structure 33

Table 3.1. Components of the iteration_data structure

iteration_data.f_internal Function handle to finternal
iteration_data.core_data Structure passed to finternai
iteration_data.complete history Complete history structure
iteration_data.xb xb is the best point found so far in

the optimization
iteration_data.funsb finternai(zh)
iteration_data.fobjb Objective function value at xb
iteration_data.h Current scale
iteration_data.itc the inner iteration counter
options the options structure

Suppose your function is f and your feasible set is
Q={zecRN|L; < (z); <U;}.
imfil.m begins by transforming) to
Qinternat = {z € RNV |0 < (2); < 1.

The transformation is
r=Dz+ L,

where D is the diagonal matrix with entries
Di; = (U; — Ly).

imfil.m also scales f by multiplication by im fil_fscale (see § 2.5.1). The inner it-
eration and the search within imfil.m operate on the internal function f_internal.
The scaling is

finternal(z) = f(DZ + L)/imfil*fscale

for optimization problems and

finternal(z) = F(DZ + L)/\/’m

for nonlinear least squares.

MATLAB functions you write for the executive_function and explore_function
options interrupt imfil.m in mid-stream, and hence will see the internal function
and the internal variables. imfil.m rescales the history array and the complete_history
structure to your original variables after the optimization is complete. If your func-
tions want to see, for example, the complete history structure in the original
coordinates or explore design space in the original coordinates, you will have to do
that rescaling yourself. This can get messy and we do not recommend that.

imfil.m informs finterna; @bout the bounds with the core_data structure,
which is an extra argument to finterna;- imfil.m also treats finternar as if were
both scale-aware and noise-aware. The options structure is part of the core_data

34 Chapter 3. Advanced Options

structure, so the call to finternar Will send the correct arguments to f and do the
proper things with the other options (such as the parallel option). Your call to
finterna should look like

[fx,iff,icf,tol]=f_internal(x,h,core_data).

You should never have to work with core_data directly, only be prepared to pass
it to f_internal. core_data is a substructure of the iteration_data structure,
which you get by

core_data = iteration_data.core_data;

If your original function f is neither scale-aware or noise-aware, you may set h = 1
with no harm and ignore the output argument tol.

3.3 Updating the complete history Structure

The final two advanced options will update the complete history structure and
may want to read it as well. You access this structure as a substructure of the
iteration_data structure.

complete_history = iteration_data.complete_history

You’ll need to loook at § 2.3.2 if you want to read the data in the structure.

If you wish to write to the structure, you must pass a history structure back to
imfil.m. The sections on the executive _function and explore_function options
explain where your structure must appear in the list of output arguments. In this
section we explain how you must build that structure.

The complete_history structure uses the scaled coordinates, so it is based
on evaluations of f_internal. The function values in the structure are scalars for
optimization problems and vectors in R for nonlinear least squares problems,

We provide a tool build_history in the Imfil _Tools directory which you
should use for this purpose. As you evaluate the f_internal you should accumulate
the history of the evaluations in three arrays

e xarray, a matrix with N rows whose columns are the evaluation points,

e funmat, a matrix with M rows whose columns are the evaluations of f_internal
at the columns of xvec,

e failvec, a vector of zeros and ones with failvec(i) = 0 if the evaluation
of f_internal succeeded and =1 if the evaluation failed.

Once you have assembled these three arrays, the history of your evaluations
can be recorded with

my_history = build_history(xarray, funmat, failvec);

Your function would send my_history back to imfil.m as an output argument.
imfil.m will update the complete history structure, which you cannot update
yourself.

3.4. Testing More Points with the Explore_Function Option 35

For example, if the parallel option is off and you wish to evaluate f_internal
at the P points in xarray, you would build the other arrays by

farray=[];
failvec=[];
for i=1:P
[fout, ifail, icount, tol] = ...
feval(f_internal, xarray(:,i), h, core_data);
farray=[farray, fout];
failvec = [failvec, ifaill;
end

If the parallel option is on, this is much easier

[farray, failvec, icount, tol]
= feval(f_internal, xarray, h, core_data);

Before you build your function’s history array, you should determine if the
complete_history option is off (rare, but possible). To do this query the options,
which is substructure of iteration history.

imfil_complete_history = iteration_history.options.complete_history;
if imfil_complete_history ==
my_history = build_history(xarray, funmat, failvec);
else
my_history=[];
end

If you want to build your my_history array on your own, you must carefully
examine the build_history.m file and make sure you construct your history struc-
ture correctly. We will invoke a classical warning from [21]: “The world will end
if you get this wrong.” Therefore, we recommend that you accumulate the func-
tion evaluation data and build your my_history structure as the last step in your
function with the build history function in the Imfil Tools directory.

In the sections that follow we show how to use build_history in the context of
complete functions, so you can see the context and how to use the iteration data
structure.

3.4 Testing More Points with the Explore_Function
Option

After the inner iteration at a given scale you may explore more globally with the
explore_function option. You must write a function to select new points in the
scaled feasible set

0<(2); <1,

evaluate f at these points, and then record the results so that imfil.m may update
complete history structure. This function is called after the inner iteration and

36 Chapter 3. Advanced Options

lets you replace the best point from the inner iteration with the results of your
exploration or the current best point, whichever is better. You may also want to
examine the complete history structure to guide your selection of new points.
You may read (but not write to) complete_history which is the

iteration_data.complete_history

field of the iteration_data structure.

The complete history structure is not simple and you must do the update with
care, especially if you rescale back to your original coordinates (which is a very bad
idea). The complete_history is in the scaled coordinates, so the points all have
coordinates in [0, 1]. The values of the function are also scaled by imfil_fscale (see
S 2.5.1) Right before imfil.m returns, imfil.m rescales the vectors and function
values in the complete_history structure into the original coordinates, but if you
access it before the optimization is complete, you must use the scaled coordinates.

If, for example, your function is my_search you set the option with

options=imfil_optset(’explore_function’,@my_search,options);
Your function call must look like

[xs, fs, my_cost, explore_history] = ...
my_search(f_internal s iteration_data,my_search_data) ;

The inputs are f _internal which is imfil.m’s internal function, the iteration_data
structure, and an (optional) final argument my_search_data for any data you wish
to pass to your explore function. You tell imfil.m about my_search_data by setting
the explore_data option:

options=imfil_optset(’explore_data’,my_search_data,options);

In the output z; is the best point from your search, fs = f(zs), and my_cost
is the number of function evaluations your exploration needed. Remember that if
you are solving a nonlinear least squares problem, f; = F(zs) will be a vector in
RM,

If you wish to turn the explore_function option off after you have used it,
you may reset the options structure or turn it off explicitly with

options=imfil_optset(’explore’,’off’);

3.4.1 Random Search Example

We return to the example from § 3.1. Our exploration function simply evaluates f
at random points in 2. The number of random points is an extra argument to the
function. The MATLAB code for this explore function is in Imfil_Tools directory.
The function is more general than we need for this example. In particular, it will
do the right things for nonlinear least squares problems and parallel evaluation.
We list the entire function here in order to show you how to get the data
you’ll need from the iteration_data structure, do the main work of the function,

3.4. Testing More Points with the Explore_Function Option 37

and then record the results. The first several lines of the function are devoted
to harvesting data. The function evaluation tests for parallelism by querying the
parallel option and will use parallel evaluation if the parallel is on. The next
block of code determines if you’ve found a new best point. Finally, the code builds
the explore history structure. You will see this pattern again when we discuss
the executive_function option in § 3.5.

function [xs, fs, my_cost, explore_history] = ...
random_search(f_internal,iteration_data,my_search_data);

% RANDOM_SEARCH

% function [xs, fs, my_cost, explore_history] = ...

% random_search(f_internal,iteration_data,my_search_data);

)

% This is an example of an explore_function.

% This function samples f at a few random points and returns the best

% thing it found. I store the number of random points in the

% my_search_data structure.

b

options=iteration_data.options;

parallel = options.parallel;

imfil_complete_history=options.complete_history;

npoints=my_search_data;

xarray=rand(2,npoints);

farray=[];

my_cost=0;

b

% Extract what you need from the structures.

)

% Pass h and core_data to f_internal

h

h=iteration_data.h;

core_data=iteration_data.core_data;

)

% What’s the current best point and best objective function value?

h

xb=iteration_data.xb;

funsb=iteration_data.funsb;

fvalb=iteration_data.fobjb;

)

% Am I solving a least squares problem?

h

least_squares=iteration_data.options.least_squares;

)

% Sample the points. Keep the books for the build_history function.

)

failvec=zeros(1,npoints);

38 Chapter 3. Advanced Options

funmat=[];
if parallel ==
for i=1:npoints
x=xarray(:,i);
[funmati,failvec(i),icount,tol] = ...
feval(f_internal,x,h,core_data);
funmat=[funmat,funmati];
my_cost=my_cost+icount;
end
else
[funmat,fail,icount]=feval(f_internal,xarray,h,core_data);
my_cost = my_cost+sum(icount);
end
)
% Do the right thing for least squares problems.
YA
for i=1:npoints
if least_squares ==
fval=funmat (:,i) ’*funmat(:,i)/2;

else
fval=funmat (i) ;
end
farray=[farray’,fvall]’;
end
%

% Now see if you’ve made any progress. If not, return the
% the current best point.
b
[ft,imin]=min(farray);
if failvec(imin) ==
xs=xarray(:,imin);
fs=funmat(:,imin);
else
fs=funsb;
xs=xb;
end
)
% Finally, build the explore_data structure.
b
if imfil_complete_history ==
explore_history = build_history(xarray, funmat, failvec);
else
explore_history=[];
end

3.4. Testing More Points with the Explore_Function Option 39

Note that, following the recommendation in § 3.3, explore_function checks
to see if the complete_history option is set to the default of yes.
The MATLAB code for the example is

Examples/Linear_Constraints/explore_driver.m.
In the example we set

npoints=10;
options=imfil_optset (’explore_function’,@my_search,...
’explore_data’ ,npoints);

which tells the search function to look for the number of points in its last input
argument.

Figure 3.2 shows the iteration history with 10 random directions and compares
it with one with random_stencil (see § 2.9.2) set to 10. The exploration is faster
than the random_stencil option with a similar number of function evaluations, but
neither random option is a good as the deterministic methods vstencil (§ 2.9.1) or
add new_directions (§ 3.1) which we compared in Figure 3.1. This is no surprise.
The deterministic methods use knowledge of the structure of the problem, and the
randomized methods just guess.

Figure 3.2. [teration History with Random FExploration

;
——explore
- - -random_stencil

Value of f

Cost

Finally, in Figure 3.3 we present scatter plots of the successful points from
the complete history structures. As you can see the random exploration nicely
captures the constraint boundary.

40

Chapter 3. Advanced Options

Figure 3.3. Complete History with Random FExploration

Explore Random Stencil
1 + 1 . i
* ¥ % %2%@ * ¥ K 2 %
*K ok * % *
0.8 * Tk * 0.8 ¥ ok
Sl ¥ * % K
* kK gy ¥
*y %; o ¥ *
0.6 * 0.6 ® gk
* ek
4
* % * £ * ég
0.4 * 0.4
Fx *
* *
* sk
0.2 0.2 *
*
0 0

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

3.5 The Executive Function

If you don’t like the gradient-based inner iterations in imfil.m, you may replace
them with one you like better. The quasi-Newton and Gauss-Newton solvers built
into imfil.m use the same interface as the one we describe here. These functions
take a single iteration when called and then return control to imfil.m. Your
replacement must do that as well.

To do this you use the executive_function option to pass imfil.m a handle
to your solver and, if needed, the executive_data option for any data, such as a
quasi-Newton model Hessian or a Levenberg-Marquardt parameter, you solver will
update as the iteration progresses. You initialize the data when you set the option.
The call to imfil_optset will look like

options=imfil_optset (’executive_function’,@my_solver,...
’executive_data’ ,my_data) ;

where my_solver is your solver and my_data is your data. my_data may be a matrix,
a function handle, or any structure you need.

Suppose, for example, your solver is my_solver.m and you maintain a quasi-
Newton Hessian. If you wish to initialize the Hessian to the identity matrix, you
would set up the executive like this:

Hess = eye(n,n);
options=imfil_optset(’executive_function’,@my_solver,
’executive_data’ ,Hess);

The data you set with the executive_data option may be any matrix or structure
you need.

In § 3.5.3 and 4.4.2 we show how to incorporate the Levenberg-Marquardt
method into imfil.m. The solver lev_mar_exec.m is in the Imfil _Tools subdirec-
tory. In the example we initialize the Levenberg-Marquardt parameter to 1 with
the call

options=imfil_optset(’least_squares’,1,...
’executive_function’,@lev_mar_exec,’executive_data’,1.0);

3.5. The Executive Function 41

Similarly to the explore_function option, your executive function must man-
age a history structure and conform to a rigid calling sequence. The calling sequence
gives you enough information to update a quasi-Newton model Hessian, and you
must include that information in the input even if you don’t plan to use it. The
calling sequence is

function [xp, fvalp, funp, fcost, iarm, solver_hist, nfail, new_datal
= my_solver(f, x, fun, sdiff, xc, gc, iteration_data, old data)

3.5.1 Input to the Executive Function

The input string must be somewhat long to accommodate the differing needs of
quasi-Newton methods for optimization, which need some history of the iteration,
and other methods, such as Gauss-Newton, which do not. We describe the input
arguments in the list below.

e f is a handle to the objective function (optimization) or the least squares
residual (nonlinear least squares). imfil.m will pass f_internal to you with
this argument.

e 1 is the most recent iteration.
o fun=f(x).

e sdif f is the simplex derivative of x. This is the gradient for optimization
problems and the Jacobian for nonlinear least squares.

e xc is the previous point at which a simplex derivative was computed.
e gc is the gradient of the objective function at zc.
e iteration_data is the iteration data structure (see § 3.2).

e old data is the data your executive function will update.

The input list should be self-explanatory with the exception of the two points
and two derivatives, which are for quasi-Newton methods. If your data is a quasi-
Newton model Hessian, you will update that model Hessian using x, xc, gc, and
sdif f before computing the new point. This is the one time it might help to examine
the source of imfil.m and, in particular the function imfil _gn update.

3.5.2 Output from the Executive Function

The output arguments are used by imfil.m to update its internal history structures
and manage the iteration. The next (and final) list describes the output arguments.

e zp is the new point, which may be the same as x if the iteration fails.

e foalp is the objective function value at xzp. fvalp = funp for optimization
problems, but not for nonlinear least squares.

42 Chapter 3. Advanced Options

funp = f(zp).

fcost is the total cost of the function evaluations done in your function.

e jarm is the counter of step-size reductions, Levenberg-Marquardt parameter
increments, or other global convergences changes. You may elect to declare a
failure when iarm > maxitarm.

e solver_hist is the update to the complete_history structure. You build it
the same way as you would the explore_history structure. See § 3.3 for the

rules.
o nfail is the failure flag. nfail = 0 if the iteration succeeds. Otherwise
nfail = 1.

e new_data is your function’s update of old_data. For example in the quasi-
Newton code, new_data is the update of the model Hessian. The Gauss-
Newton solver does not update the data at all.

An executive function builds its history structure in the same way an explore
function does and we refer the reader to § 3.3 and § 3.4.1 for the details.

If you wish to turn the executive_function option off after you have used
it, you may reset the options structure or turn it off explicitly with

options=imfil_optset(’executive’,’off’);

3.56.3 Levenberg-Marquardt Example

We have put an example the Imfil _Tools directory. The code lev_mar_exec.m is
am implementation of the Levenberg-Marquardt algorithm. Our implementation
is standard [10,18,19]. We apply lev_mar_exec.m to an example in § 4.4.2, and will
only discuss a few details of the implementation here.

The function definition statement is

function [xp, fvalp, funp, fcost, iarm, levmar_hist, nfail, nunew]
= lev_mar_exec(f, x, fun, jac, xc, gc,
iteration_data, nuold)

Here we have followed the directions, while naming the history structure and the
Levenberg-Marquardt parameter in an appropriate way. This is a least squares
computation, so sdif f is a stencil Jacobian and we have named the variable ac-
cordingly. You should study this code before writing an executive function on your
own.

Our implementation is serial. A parallel implementation (which is an exercise
for you) would test several candidate Levenberg-Marquardt parameters at once time
by evaluating the functions, computing ared/pred, and then choosing one parameter
or rejecting them all.

One thing any executive function should so is check for input errors. The
example function lev_mar_exec.m makes sure that the least_squares option is
on, for instance.

Chapter 4

Parameter Identification
Example

The example in this chapter is a parameter identification (PID) problem from
[2,18]. In this example N = 2. The goal is to identify the damping constant ¢ and
spring constant k of a linear spring by minimizing the difference between a numerical
prediction and measured data. The experimental scenario is that the spring-mass
system will be set into motion by an initial displacement from equilibrium and
measurements of displacements will be taken at equally spaced increments in time.

In this chapter we go into considerable detail about both the application and
the MATLAB programming.

The MATLAB codes for this chapter are in the Examples/Case_Study_PID
subdirectory of the software collection.

4.1 Problem Formulation

We consider an unforced harmonic oscillator where the displacement u is the solution
of the initial value problem

u’ + cu' + ku = 0;u(0) = ug, v’ (0) = 0, (4.1)

on the interval [0,10]. In (4.1) v/ = du/dt and v = d*u/dt>.

We let © = (¢, k)T be the vector of unknown parameters and, when the de-
pendence on the parameters needs to be explicit, we will write u(t : z) instead
of u(t) for the solution of (4.1). If the displacement is sampled at {t;}£,, where
ti = (i — 1)T/(M — 1), and the observations for u are {u;}},, then the objective
function is

1 M
fla) =3 Z lu(t; : x) — ug?. (4.2)

We will use MATLAB’s ode15s [31] to solve (4.1), and use the solution from
odel5s to compute F. The first step in using ode15s is to convert (4.1) to a first

order system for
(u\ [u
Y=\ v)= \w)

44 Chapter 4. Parameter Identification Example

The resulting first order system is

v'= (o~ u) ! (4.3)

with initial data y(0) = (ug,0)7.

Here is a MATLAB code for the right side of the differential equation. Note
that the parameters ¢ and k are passed to the right side of the differential equation
as a third argument. The ode solvers within MATLAB let you pass the parameters
to the function in this way by means of an optional final argument in the call to
the solvers.

function yp=yfunsp(t,y,pid_parms)
)

% simple harmonic oscillator for parameter id example
% first-order system form of y’’ + c y’> +ky =0

yp=zeros(2,1);

yp(L)=y(2);
c=pid_parms(1);
k=pid_parms(2);

yp(2)= - kx y(1) - cxy(2);

One might think that it is easier to pass the parameters as MATLAB global
variables. However, global variables can cause problems with parallel computing.
So, don’t do that.

We configure the problem so that the solution is z* = (¢, k)T = (1,1)7. For
these values of the parameter the solution for ug = 10 is

u=et/? (10cos(\/§t) +(5/V3) sm(ﬁt)) .

We will begin by letting the data u; = wu(t; : z*), where ¢t; = (i — 1)/100 for
1 <4 < 101. So, we compare the output of ode15s with the exact solution. The
MATLAB codes let you vary the initial data, and the code yfunex.m will compute
the exact solution for any initial data, ¢, and k.

The least-squares formulation is the most natural. To compute the residual we
must solve the initial value problem (4.3) with ode15s and then compare the results
with the data. In this example we assume that yfunsp.m is a file in the MATLAB
path. Our main program driver_pid.m builds a data structure pid_info with
several parts:

e pid_data: a column vector of size 101 with the data {u;}1%},
e time pts: the points in time where ode15s reports the solution,

e pid_yO: the column vector with the initial data, (10,0)7, and

4.1. Problem Formulation 45

e pid_tol: a scalar for the tolerances for ode15s. We set both the relative and
absolute tolerances to 1073,

This structure will not change throughout the optimization. The driver builds the
structure with the lines:

)

% pid_parms contains the zero-residual solution to the noise-free problem

% pid_tol is the tolerance given to odelbs

)

m=100; t0=0; tf=10;

)

% Construct the data for the integration.

% pid_data is a sampling of the "true" solution.

h

pid_parms=[1,1]’; pid_y0=[10,0]’; pid_tol=1.d-3;

time_pts=(0:m) ’*(tf-t0) /m+t0;

)

% Find the analytic solution.

h

pid_data=exact_solution(time_pts,pid_y0,pid_parms) ;

)

% Pack the data into a structure to pass to serial_pidlsq

)

pid_info=struct(’pid_y0’,pid_yO0, ’pid_tol’,pid_tol,...
’time_pts’,time_pts,’pid_data’,pid_data);

and then runs imfil.m four times to make Figure 4.1. The call to imfil.m uses the
optional extra argument to send the pid_data structure to the function.

[x,histout]=imfil (x0,@serial_pidlsq,budget,bounds,options,pid_info) ;

The tolerance for the initial value problem solver is coarse, and we should not expect
to be able to reduce the norm of the nonlinear residual by much more than a factor
of 103, even in the zero-residual case.

The serial code serial_pidlsq computes the residual using the pid_-info
structure. This structure is passed to imfil.m as an optional final argument, and
imfil.m sends it directly to serial pidlsq (see § 2.8). The input for serial pidlsq
is is the vector of parameters = (¢, k)7 and the pid_info structure. serial_pidlsq
must then pass x to yfunsp.m, which it will do with the same optional final argu-
ment approach.

function [f,ifail,icount]=serial_pidlsq(x,pid_info)

b

% Parameter ID example formulated as nonlinear least squares problem.
)

% Unpack the pid_info structure and get organized.

h

46 Chapter 4. Parameter Identification Example

pid_data=pid_info.pid_data;

tol=pid_info.pid_tol;

time_pts=pid_info.time_pts;

yO=pid_info.pid_yO0;

YA

% Call the integrator only if x is physically reasonable, ie if

% x(1) and x(2) are nonnegative. Otherwise, report a failure.

A

ifail=0; icount=1;

if min(x) < O
ifail=1; icount=0; f=Nal;

else
options=odeset (’RelTol’,tol,’AbsTol’,tol,’Jconstant’,1);
[t,yl=o0delbs(@yfunsp, time_pts, y0, options, x);
f=y(:,1)-pid_data(:,1);

end

The calling sequence follows the format in § 2.2.2. Note that there is a failure
mode. If either ¢ or k is negative, then the spring is not physical and the solution
is exponentially increasing. The code traps this and returns without calling the
integrator. You could fix this yourself, as we did in the driver program, by making
sure that the lower bounds you give to imfil.m are all nonnegative.

An integrator like ode15s asks you to provide a local truncation error tolerance
via the odeset command. This tolerance controls the accuracy of the integration,
and thereby the resolution in f. We therefore have an opportunity to experiment
with the scale_aware option by letting the accuracy of the integrator depend
on the scale. We will do that in § 4.3. For the present we will fix the tolerance
to the scalar tol, which serial_pidlsq harvests from the pidinfo structure as
pidinfo.pid_tol. We have also used odeset to set the option Jconstant in ode15s
to 1, indicating that the differential equation is linear. Finally, we put x in as an
optional final argument, which is then passed to yfunsp as its third argument.

If you plan to use the MATLAB initial value prolblem solvers in your work,
study the help files. Typing help odeset and help odelbs at the MATLAB
prompt will make this section easier to follow.

4.1.1 Calling imfil.m and Looking at Results

We now show how the simplest call would work. The plots in the upper row of
Figure 4.1 reflect the a case with an intentionally poor choice of bounds

1= (3) mo=(2)

which exclude the solution. We gave the optimization a budget of 100 calls to the
integrator and an artificially low upper limit of five scales {27"}>_,. We changed
the set of scales from the default set {27"}7 _, by using the imfil optset command

4.1. Problem Formulation 47

to change scaledepth. The MATLAB commands which follow the construction
of the pid_info structure are

bounds=[2 20; 0 5];
x0=[5,5]’; budget= 100;
options=imfil_optset(’scaledepth’,5,’least_squares’,1);

Note that the least_squares option is on in this example. Having set the options,
the call to imfil.m looks like

[x,histout]=imfil (x0,@serial_pidlsq,budget,bounds,options,pid_info);

Note that the structure pid_info is the final argument and is sent directly to
serial_pidlsq.

As you can see from the plot on the upper left of Figure 4.1, the iteration ter-
minated before the budget had been exhausted. We can return to the default set of
scales by reinitializing the options structure, but making sure that least_squares
is still on,

options=imfil_optset(’least_squares’,1);

and calling imfil.m again. The picture on the upper right reflects the results of
this change. Now the optimization requires less than the entire budget, the final
value of the objective function is lower (but not by much), and the value of f seems
to have stabilized. However, the graph of f also has a flat region earlier in the
iteration, but the iteration had not converged at that point. The upper two images
in Figure 4.1 illustrate the difficulty in terminating the iteration.

The histout array records the progress of the optimization. All the plots
were made with the first two columns of the histout array. The plots at the top
of Figure 4.1 were made with the command

plot(histout(:,1) ,histout(:,2),’-7);

The first two columns of the histout array are the function values and the cumu-
lative cost, measured in this case by calls to ode15s. When we look at the plots
we see that the optimization has made very little progress after 75 or so calls to
ode15s. You may modify the example code to add more scales and increase the
budget, but the value of the function will decrease only a little, if at all. The reason
for this is that we have resolved the optimal point as far as the resolution in the
integrator will allow.

The plots on the bottom of Figure 4.1 are from an optimization where the
global minimum is within the bounds. Here we set

bounds=[0 20; 0 5];

The lower left plot in Figure 4.1 shows the progress of the optimization with a
budget of 100 and the default set of scales. In this case the budget and the number
of scales are sufficient to fully resolve the optimal value. The lower right plot shows
the results with a budget of 200 and 20 scales. The results are not very different, and

48 Chapter 4. Parameter Identification Example

Figure 4.1. Iteration History: Parameter 1D

Few scales; constraints active Default scales; constraints active
70 70
60 60
S 50 50
[}
3 40 40
g
30 30
20 20
0 50 100 0 50 100
) Low budget; constraints inactive) High budget; constraints inactive
10 10
10 10
= 10° 10°
° -1 -1
810 10
£ 10 102
10° 10°
10 10
0 50 100 150 200 0 50 100 150 200
Calls to integrator Calls to integrator

the iteration seems to spend over half the time at the same place. This returns us
to the issue of termination. How do we know when to stop the optimization? How
can we tell if the budget is too small? Should we change the set of scales? These
are open research questions at this time (2011). We will return to the termination
issue in this chapter in § 4.4.

4.2 Parallelism

The MATLAB Parallel Toolbox makes parallel computing in MATLAB very ac-
cessible, but NOT EASY. Even the basic parfor loop requires attention to data
dependencies and data types. The only way to master the MATLAB tools, or any
other parallel environment, is to play with the software, make mistakes, and try to
understand the (sometimes opaque) error messages.

4.2.1 Parallelizing the Serial Code

As an example of the use of the parallel option, we report on results obtained
with the parfor loop from the MATLAB Parallel Toolbox. If you don’t have that
toolbox, you may have to replace the parfor loop in parallel_pidlsq.m with a for
loop if you have an older version of MATLAB, and thereby mimic the true parallel
version in the sense that you will get the same results as the parallel algorithm for
this example. However, as a general rule you cannot duplicate the parallel results
with this technique.

function [fa,ifaila,icounta]=parallel_pidlsq(xa,pid_info)
% PARALLEL_PIDLSQ uses parfor to parallelize the serial code.

4.2. Parallelism 49

%

% The code will accept multiple input vectors

% and return a matrix of outputs.

%

[nr,nc]l=size(xa);

fa=[];

ifaila=zeros(nc,1);

fcounta=zeros(nc,1);

parfor i=1:nc
[fap,ifaila(i),icounta(i)]=serial_pidlsq(xa(:,i),pid_info);
fa=[fa, fap];

end

Now one needs to make only a few changes to driver_pid. Turn the parallel
option on and call parallel pidlsq.m. The new lines are

options=imfil_optset(’parallel’,1,options);
[x,histout]=imfil (x0,@parallel_pidlsq,budget,bounds,options);

Of course, before using the parallel toolbox, you must create a matlabpool.
Here’s an example of how one does that

>> matlabpool(8)

Starting matlabpool using the ’local’ configuration ...
connected to 8 labs.

>>

In this example, a new matlabpool with eight cores is ready for your parallel job. If
you invoke the matlabpool command and already have a pool in place, MATLAB
will close the existing pool and build a new one.

4.2.2 Looking at the Parallel Results

We will now compare the parallel and serial algorithms. We can do this using the
parallel function parallel_pidlsq even if the parallel option is off. The reason
is that if parallel is set to 0, the function is evaluated in serial mode. We also
compare the least squares formulation to the alternative formulation of using the
quasi-Newton optimization algorithm to minimize

fl@) = |IF()?/2.
The MATLAB code for this is pidobj.m.

function [fa,ifaila,icountal=pidobj(xa,pid_info)

% PIDOBJ calls PARALLEL_PIDLSQ to build an objective

% function that does not use the least squares structure.
A

[nr,nc]l=size(xa);

50 Chapter 4. Parameter Identification Example

Figure 4.2. Optimization History: Parameter ID Revisited

Default scales; constraints active More scales; constraints active
70 70
— serial-opt
60 - - - serial-Isq 60
= —e— parallel-opt]
3 50 —— parallel-Isq 50
e
g 40 40
30 30
20 20
0 50 100 0 50 100
) Low budget; constraints inactive) High budget; constraints inactive
10 10" &
k]
3]
=
£ 10 102
10 10
0 50 100 150 200 0 50 100 150 200
Calls to integrator Calls to integrator

fa=zeros(1,nc);
[f1,ifaila,icountal=parallel_pidlsq(xa,pid_info);
for i=1l:nc

fa(i)=Ff1(:,1i)’*f1(:,1)/2;
end

The call to imfil.m would be exactly the same as for the least squares formu-
lation, except you would not turn on the least_squares option. Ignoring the least
squares structure is a bad idea, as you can see from the plots in Figure 4.2.

We now revisit Figure 4.1 by comparing the serial least squares results in
that figure with a serial optimization computation and parallel results. Clearly the
least squares formulation is better because of the rapid convergence of the Gauss-
Newton iteration for this small-residual problem. As one can see from the lower
right plot in Figure 4.2, the number of function evaluations in serial and parallel
iteration histories can differ by over 30%, in favor of the serial algorithm, which
is not surprising since N = 2 and the parallel line search queries three or more
possibilities at once. This is an example of the difference between the parallel and
serial algorithms. The plots for the active constraint cases show that the parallel
and serial algorithms need roughly the same number of iterations. However, the
parallel method will, in general, take less time, especially if calls to the function are
expensive. The code driver_parallel_pid.m generates these plots.

One can use the optional output argument complete history (see § 2.3.2)
to examine the difference between the parallel and serial algorithms in more detail.
The complete_history structure records the successful points (i.e. those for which
f returns a value), the values at the successful points, and the points where f failed
to return a value. The fields in the structure are complete_ history.good_points,

4.3. Using the scale_aware Option 51

Figure 4.3. Where is the function evaluated?

Serial Parallel
5 * * 5 * *
* *
4 4
* * *
3 T 3 * 1
* £ * E
2 * * ¥ 2 * x ¥
* * *
* *
1% *»%% * 1f % 4@% *
K * - *
0% 0
0 1 2 3 4 5 0 1 2 3 4 5

complete_history.good_values, and complete history.failed points. The call
to imfil.m looks like

[x,histout,complete_historyl=imfil(x0,f,budget,bounds,options);

In Figure 4.3 we plot the good points for both the serial and parallel op-
timizations for the nonlinear least squares formulation of the parameter identi-
fication problem where the constraints are inactive at the solution. This is the
computation from the lower right of Figure 4.2. We harvested the data from the
complete history structure with the MATLAB program history_test.m. This
is another view of the example from the lower right corner of Figure 4.2 and shows
that the function is evaluated in somewhat different places. The parallel method
requires more function evaluations (58) than the serial (51), which is no surprise.
Note how the evaluations cluster near the solution in both cases.

4.3 Using the scale aware Option

The scale_aware option lets you design functions which can use the scale h to,
for example, adjust their internal tolerances. This is very useful if the function is
very expensive to evaluate, because then a coarse tolerance early in the iteration
can save a significant amount of work. This is an example of how to use imfil.m
as a multi-fidelity solver.

Here is a simple example. sa_serial pidlsq.m is a scale-aware version of
serial_pidlsq.m. The scale-aware version adjusts the tolerance sent to odelbs
with the formula

tol = h*/10,

rather than using the tolerance from the pid_info structure. The calling sequence
is
[f,ifail,icount]=sa_serial_pidlsq(x,h,pid_info)

Note that the scale is the second argument to the function. The final argument
must always be the extra argument, if you are using one. We have also included a
parallel version sa_parallel pidlsq.m.

52 Chapter 4. Parameter Identification Example

Figure 4.4. A Scale-Aware Function

Scale-Aware Optimization

10 T

Value of f

L
0 50 100 150 200
Calls to integrator

The driver code driver_sa.m repeats the experiment for the unconstrained
problem with a budget of 200 and scaledepth set to 20. This corresponds to the
lower right plot in Figure 4.2. In Figure 4.4 you can see that the value of the function
decreases beyond the leval at which it stagnated in the earlier computation. The
reason for this is that the tolerance for the simulation keeps pace with the decrease
in scales.

You should be aware that if you change h for a scale-aware function, you are
also changing the function itself. One artifact you may see is an increase in the
function value after you change scales. This should not be a surprise, since the
function changes each time the tolerance changes, so imfil is solving a different
problem with every change in scale. This did not happen in this example, but it
certainly could have. While you might think that the accuracy of the simulator
increases monotonically as the tolerances are tightened, there is no guarantee for
that [25].

4.4 Termination Revisited

One striking feature of Figure 4.1 is how the least squares optimizations reached
an optimal value by 50 or so iterations, but the iteration did not terminate until
the list of scales or the budget was exhausted. Controlling this wasted effort is one
of the important and unresolved issues in this field. The examples in this section
illustrate some of your options and also show that no single approach will solve all
the problems.

If you know something about the size of the noise in your function, imfil.m
provides three options, target, stencil_delta and function_delta, which let you

4.4. Termination Revisited 53

exploit that knowledge. For this example, we know the tolerance (atol = rtol =
1073) we've given to odel5s and can assume that the function evaluation is not
much more accurate than that.

4.4.1 Using function delta to Terminate the lteration

Setting function delta to d > 0 with the command
options=imfil_optset(’function_delta’,delta,options);

will cause the optimization to terminate as soon as the difference in f between
successive iterations is < 4. So, what’s § for this example? In Figure 4.5 we
try two values, 1072 and 107% for the unconstrained case and 5 and 103 for the
constrained (large residual) case. If the constraints are active and the residual at
optimality is large, the two values 10™2 and 1076 did not save any calls to f, so we
tried our luck with 5, a much larger value, which, as you can see from the plot on
the left of Figure 4.5, was a very good choice. In the small residual case, setting
function delta is also very effective in eliminating the wasted function calls. Note
that setting 6 = 107% results in very little additional progress in this case.

The problem, of course, is picking the appropriate values of the parameter.
While this example shows that you can do that, there is no theory to guide you in
picking the right parameter, even if you have full knowledge of the errors in f.

Figure 4.5 was generated with the code driver_term.m. You might want to
modify that code to experiment with the target and stencil_delta options.

Figure 4.5. Terminating with function_delta

5 Constraints inactive Constraints active
10" - 70
101 *+ 0=10 | 60 * 6:5_3
5=10"° 5=10
0 50
Y— 10 3 Y—
IS S 40
g 10" g
g g
10° ! 30
10°
—4
10 20
0 50 100 150 200 0 50 100 150 200

4.4.2 Using the Executive Function

In this section we show how the executive_function option from § 3.5 can be
used to replace the default Gauss-Newton nonlinear least squares solver with a
Levenberg-Marquardt code. Our solver lev_mar_exec.m is in the Imfil Tools

54 Chapter 4. Parameter Identification Example

directory. The driver driver_1m.m is in the Examples/Case_Study_PID directory.
Look at § 3.5 and § 3.5.3 to see how the function is defined.

Very little needs to be done to use the solver. The driver compares the
Levenberg-Marquardt code to the default Gauss-Newton solver with a scaledepth
of 20. To use the default solver, set the options with

options=imfil_optset(’least_squares’,1,’scaledepth’,20);

To use the new solver, you add settings for executive function and executive_data.
The executive_data in this case is the Levenberg-Marquardt parameter, which we
initialize to 1. So the options are set with

options=imfil_optset(’least_squares’,1,’scaledepth’,20,...
’executive_function’,@lev_mar_exec,’executive_data’,1.0);

The call to imfil.m is the same for either choice
[x,histoutgx]=imfilv1l(x0,@serial_pidlsq,budget,bounds,options,pid_info) ;

and is the same call we have used throughout this case study.

In Figure 4.6 we compare the two methods. As you can see the Levenberg-
Marquardt iteration reduces the residual more rapidly, and significantly so in the
case where the constraints are active.

Figure 4.6. Levenberg-Marquardt Ezecutive Results

Constraints Active) Constraints Inactive
70 10
—G-N

60 “-oLM
%5 50
(0]
2
< 40 10

30

20 — 10°

0 10 20 30 40 50 0 50 100 150 200

Calls to integrator Calls to integrator

[1]

2]

[10]

Bibliography

C. AuDET AND J. E. DENNIS, Mesh adaptive direct search algorithms for
constrained optimization, STAM J. Optim., 17 (2006), pp. 188-217.

H. T. BANks AND H. T. TRAN, Mathematical and experimental modeling of
physical processes. Department of Mathematics, North Carolina State Univer-
sity, unpublished lecture notes for Mathematics 573-4, 1997.

J. T. BETTS, Practical Methods for Nonlinear Control Using Nonlinear Pro-
gramming, no. 3 in Advances in Design and Control, SIAM, Philadelphia, 2000.

J. T. BETTS, M. J. CARTER, AND W. P. HUFFMAN, Software for nonlin-
ear optimization, Tech. Rep. MEA-LR-083 R1, Mathematics and Engineering
Analysis Library Report, Boeing Information and Support Services, June 6
1997.

M. BUEHREN, MULTICORE - parallel processing on multiple cores, 2007.
Available from the MATLAB Central File Exchange.

R. BYrD, J. C. GILBERT, AND J. NOCEDAL, A trust region method based on
interior point techniques for nonlinear programming, Mathematical Program-
ming A, 89 (2000), pp. 149-185.

T. D. Cuoi, O. J. ESLINGER, P. GILMORE, A. PATRICK, C. T. KELLEY,
AND J. M. GABLONSKY, IFFCO: Implicit Filtering for Constrained Optimiza-
tion, Version 2, Tech. Rep. CRSC-TR99-23, North Carolina State University,
Center for Research in Scientific Computation, July 1999.

A. R. ConnN, N. I. M. GouLp, AND P. L. ToiNnT, LANCELOT: A For-
tran Package for Large-Scale Nonlinear Optimization (Release A), no. 17 in
Springer Series in Computational Mathematics, Springer Verlag, Heidelberg,
Berlin, New York, 1992.

A. R. ConN, K. SCHEINBERG, AND L. N. VICENTE, Introduction to
Derivative-Free Optimization, MPS-STAM Series on Optimization, STAM,
Philadelphia, 2009.

J. E. DENNIS AND R. B. SCHNABEL, Numerical Methods for Unconstrained
Optimization and Nonlinear FEquations, no. 16 in Classics in Applied Mathe-
matics, STAM, Philadelphia, 1996.

55

56

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[23]

[24]

D. E. FINKEL AND C. T. KELLEY, Convergence analysis of sampling methods
for perturbed Lipschitz functions, Pacific J. Opt., 5 (2009), pp. 339-350.

R. FLETCHER, Practical methods of optimization, John Wiley and Sons, New
York, 1987.

K. R. FOwLER, J. P. REESE, C. E. Kggs, J. E. DEnNis, C. T. KELLEY,
C. T. MILLER, C. AUDET, A. J. BOOKER, G. COUTURE, R. W. DARWIN,
M. W. FARTHING, D. E. FINKEL, J. M. GABLONSKY, G. GRAY, AND T. G.
KoLbpA, A comparison of derivative-free optimization methods for groundwa-

ter supply and hydraulic capture problems, Advances in Water Resources, 31
(2008), pp. 743-757.

P. E. GiLL, W. MURRAY, AND M. A. SAUNDERS, SNOPT: An SQP algorithm
for large-scale constrained optimization, SIAM Review, 47 (2005), pp. 99-131.

P. E. GiL, W. MURRAY, AND M. H. WRIGHT, Practical Optimization,
Academic Press, London, 1981.

P. D. HougH, T. G. KoLpA, AND V. J. TORCZON, Asynchronous parallel
pattern search for monlinear optimization, SIAM J. Sci. Comput., 23 (2001),
pp- 134-156.

IEEE Standard for Binary Floating Point Arithmetic, Std 754-1885, 1985.

C. T. KELLEY, Iterative Methods for Optimization, no. 18 in Frontiers in
Applied Mathematics, STAM, Philadelphia, 1999.

——, Implicit Filtering, no. 23 in Software Environments and Tools, STAM,
Philadelphia, 2011.

J. KEPNER, Parallel MATLAB for Multicore and Mulitnode Computers, no. 21
in Software Environments and Tools, STAM, Philadelphia, PA, 2009.

B. W. KERNIGHAN AND L. L. CHERRY, Typesetting Mathematics — User’s
Guide, AT&T Bell Laboratories, Murray Hill, New Jersey, 1979. In Unix
Seventh Edition Manual, Volume 2.

T. G. KoLpa, R. M. LEwis, AND V. J. TORCZON, Optimization by direct
search: New perspectives on some classical and modern methods, SIAM Review,
45 (2003), pp. 385—482.

R. M. LEwis AND V. TORCZON, Rank ordering and positive bases in pattern
search algorithms, Tech. Rep. 96-71, Institute for Computer Applications in
Science and Engineering, December 1996.

———, Pattern search algorithms for linearly constrained minimization, STAM
J. Optim., 10 (2000), pp. 917-941.

Bibliography 57

[25]

W. LIOEN, J. DE SWART, AND W. VAN DER VEEN, Test set for IVP solvers,
tech. rep., Centrum voor Wiskunde en Informatica, Department of Numerical
Mathematics, Project Group for Parallel IVP Solvers, December 23 1996.

G. MARSAGLIA, Choosing a point from the surface of a sphere, Ann. Math.
Stat., 43 (1972), pp. 645-646.

M. E. MULLER, A note on a method for generating points unformly on N-
dimensional spheres, Comm. ACM, 2 (1959), pp. 19-20.

J. NOCEDAL AND S. J. WRIGHT, Numerical Optimization, Springer, New
York, 1999.

M. L. OVERTON, Numerical Computing with IEEE Floating Point Arithmetic,
SIAM, Philadelphia, 2001.

L. M. Rios AND N. V. SAHINIDIS, Derivative-free optimization: A review
of algorithms and comparison of software implementations. unpublished draft
manuscript, 2009.

L. F. SHAMPINE AND M. W. REICHELT, The MATLAB ODE suite, STAM J.
Sci. Comput., 18 (1997), pp. 1-22.

R. J. VANDERBEIL, LOQO: An interior point code for quadratic programming,
Optimization Methods and Software, 11 (1999), pp. 451-484.

T. A. WinsLow, R. J. TREw, P. GILMORE, AND C. T. KELLEY, Dop-
ing profiles for optimum class B performance of GaAs mesfet amplifiers, in
Proceedings IEEE/Cornell Conference on Advanced Concepts in High Speed
Devices and Circuits, IEEE, 1991, pp. 188-197.

Index

Imfil _Tools, 34

add_new_directions, 3, 29

bounds, 16

budget, 17

build_history, 34, 35

complete_history, 5, 13, 18, 34,
35, 50

custom_scales, 13, 23, 26

executive_data, 40

executive_function, 40, 53

explore_data, 36

explore_function, 35

extra_data, 16

f_internal, 34, 36

fscale, 12, 21, 28

function_delta, 19, 26, 53

histout, 17, 18

imfil optset, 8

iteration_data, 32, 34

least_squares, 9, 21

lev_mar_exec.m, 42, 53

maxfail, 27

maxit, 27

maxitarm, 27

noise_aware, 27

options, 16
parallel, 4, 9, 17, 48
quasi, 21

random_stencil, 3, 25

scale-aware, 16

scale_aware, 13, 16, 23, 28, 46,
51

scaledepth, 13, 19, 22, 23, 26, 47

scalestart, 13, 22
simple_function, 4, 6, 16
smooth_problem, 27
smooth_problems, 26

stencil, 25
stencil_delta, 19, 26
svarmin, 28

target, 19, 26
verbose, 28

vstencil, 3, 25
f_internal, 33

Bound constrained optimization, 1
Budget, 3, 16

Constraint
hidden, 3, 17

Constraints
explicit, 3

Feasible regiomn, 1

Gauss-Newton, 9
Gradient-based method, 2

Hidden constraint, 3, 17
Hyperrectangle, 2

imfil optset, 2, 19, 46
Initial Iterate, 16
Iteration

inner, 5, 27

outer, 5, 25

Levenberg-Marquardt
algorithm, 42, 53

executive, 42, 53

MATLAB Central File Exchange, 12

MATLAB parallel computing toolbox,

10
matlabpool, 10

Index

59

Multi-fidelity solver, 13, 51
MULTICORE, 12

Nominal design space, 1

Objective function, 1

odelbs, 43

Options, 19
add_ new_directions, 29
complete_history, 13, 34
custom_scales, 13, 23, 26
executive_data, 40
executive_function, 2, 40, 53
explore_data, 36
explore_function, 2, 35
extra_data, 16
fscale, 12, 19, 21, 28
function_delta, 19, 26, 53
imfil _optset, 19
least_squares, 9, 21
limit_quasi newton, 22
maxfail, 27
maxit, 27
maxitarm, 27
noise_aware, 27
parallel, 9, 17, 24, 48
quasi, 21
random_stencil, 25
scale-aware, 16
scale_aware, 13, 16, 23, 28,

46, 51

scaledepth, 13, 19, 22, 26, 47

scalestart, 13, 22
simple_function, 16
smooth_problem, 27
smooth_problems, 26
stencil, 25
stencil_delta, 19, 26
svarmin, 28

target, 19, 26
verbose, 28
vstencil, 25

Parameter identification, 43
parfor, 10, 24
Penalty function, 3

Positive basis
stencil, 25

Sampling methods, v, 2
Scale, 2, 13, 22
Scale-aware function, 13, 16, 23
Scaledepth, 2
Scalestart, 2
Scaling, 12, 20
f, 12
of =, 2
Stencil
failure, 5

